Reference Manual

My Lisp...

A Lisp interpreter

=] £ Lo e ——— 8

OVBIVIBW ..ottt ettt e e e et e e e e e e e aaee e 8
RETEIEINCES 1%
LIMITEATIONS oot e et e e et e e et e et e e anae s 10
Presentation -----=--=m-mmceeemceeeceeeeee 11
LiSP @XPreSSIONScuviiiiiiiiiie e 11
Floats, integers, and rationNalscccoceeoieieieieieeeee e 14
TRE INEEIPIETEN ...ttt ettt ettt seenaeeneens 16
Dynamic BIiNAINGcouooveieiiiiiieeeeee e 25
SEAIEUD ettt 28
COMMON QUESTIONS .ottt ettt ettt 30
McCarthy ------=smmemmemmemem e 31
QUOTE ettt ettt e 32
=1 (0) 0 o HU 33
o RS O SO T PT PO U PRSP SO U TR PRTOPROPRPPO 34
G et —————————————————t———————_——_———————_1tt11t1——— 35
oo [P 36
COMIS ettt e ettt e e e et e et e e et e e —— e e e e e —aeeeee—teeeearaeeeanareeeas 37
oo aTe TR 38
=T 0 0] oY I= TR 39
=] 1= USRS 40
Core--m—m e 41
AEOTING ..ottt 42
21072 TR 45
T ettt ettt et ae e 46
LIST oo 47
Lo Yo R 48
PPIOGN ettt et h ettt ettt 49
SO et e et e e et e e e e eaaaee e 50
WHRTE ..ot s 51
=T o) G U U SNSRI 52
PIINEIN ettt ettt teent et eneenas 53
PPIINT e e 54
=T Lo TSRS 55
FEAT-STIING vttt ettt ettt ettt ettt 56
Vet et 57
TNTEEGEI 2.ttt ettt 58
LIS ettt 59
PUUIT? oo ettt 60
o101 0] o Y=Y/ 61
PrOCEAUIE? ..ottt 62

FQEIONIAI? < e 63

SEIINIG? e 64

SEIING=>COUO. .ottt 65
SEIINGK-COABouiiniiiieii ettt ettt es e s s s ens 66
SHINGTNAEX .ttt 67
SHING-TENGEN ..ttt 68
SEIING=>IST .ottt ens 69
SHING = TOWET ...ttt 70
SEIING > NUMBDOT ..ottt 71
R gL aTe R g o o RSOOSR 72
SHIING=>SYMDBON ...ttt 73
SEIING =S U ettt ettt ettt ettt e 74
S ST ettt ettt ettt /5
S FIO@E ettt ettt ettt ens 76
S INEEGEN ettt /7
S FAETIONA .o 78
2> AENOMINATON ...ttt 79
S NVUMIEIATON .ttt 80
VBN 2. ettt ettt ettt ettt et enee 81
OSSR 82
S TSSOSO USSP U PP IUPORPPRPRRPRROPO 83
S e 84
D e a ettt 85
DSOS O T U SRS PO U T UPRUPORPRORPRRPROPO 86
et a et 87
SRR SUPSSS 88
ettt h ettt e a e eh ettt eh e eh e n e h e eh e eh e et et e oAt ekt e Rt e a e et e heeh e en s ettt et e ne et e nnenaes 89
/et et a e a ettt ea e n et e Attt a e n s bt st Rt n e et e st st ent et et e eneeneenteteeneas 20
] oSSR 21
COIIING <.ttt ettt ettt 92
FlOOT <.ttt ettt ens 93
FOUNT. .ttt ettt a e et e st et e b e b et ese e e nneeneas 94
EIUNCATO ..ottt ettt 95
MNOAUIO .ottt ettt ettt ne e nneeneas 96
QUOTIENT ettt ettt ettt ettt 97
FEIMAINTET ..ttt ettt ettt 98
ST e e e 99
EXPT et 100
23 q <O PSS UPRRPPRRPRPIPIO 101
JOG et 102
Pt e 103
AEGIrEES->raIANS ... 104
FAAIANS=>AEGIOEOS ... 105
COS, SIN, TAIN ettt nnnnnnnnn 106
QCOS, ASIN, QAN e e e 107

FEAI-TNIOAE e 108

COMPIEX-MOTE. ...ttt 109

e ere 0] o] L= OSSPSR 110
FOOLS ettt ettt e e ettt e e ettt e e e sttt e e e et e e e e ettt e e e e nnbeeeeenntteeeenateeeeennnaeeeas 111
SOIVE e 112
TNEEG e 113
ATE oottt ettt ettt et 114
SECONAS-FrOM-EPOCH ... 115
Tools.lisp-----------======mm e 116
] o] VUSSR 117
AT 1T | SRRSO TRPRPS 118
MN@PIIST ettt 119
VAN ettt et e e et e e e ettt e e e et e e e e e e e ettt e e e e ataee e e th—aeeeatbaaee e e thaaaeeatraaeeeetraaeeeantrees 120
[ttt e et ae e 121
[EE™ e 122
APPENT ettt 123
JAST .ottt ettt e eae e 124
JENGEA .. 125
JIST= ST ING ettt 126
INAKE-TIST ...ttt 127
NUER ettt 128
NERCAT .ottt 129
FEVEISE c.eveeeeeeeeeeee e et e e e et e e et e et e e et e e s e e e ss e e e st e e esseeesseeeenseeeensaeennseeeenseeennneeas 130
SUDST .ottt aens 131
SUDSTE 1ottt ettt ettt ettt e aaes 132
UNIESS oottt ettt ettt ettt 133
Wi 134
FEPIEAT ... 135
FEPEAT-EVAI ..ottt ene s 136
BN ettt e et 137
PYOT ettt ettt ettt e et e e et e e e et e e e et e e e e naa e e e e e nab e e e e e nata e e e e ntaaeeeenntteeeenbaaeeeannraeaens 138
o PRSP 139
INEIMBDEI? .ottt ettt et 140
COMIMENT ..ttt ettt e e et e e e et e e e e asa e e e e essaaeeeessaeeeeenssaeeeennsseeeens 141
Math.lisp -------=--====mmmmmemmmmm oo 142
O 2 ettt ettt ettt ettt ettt eae s 143
2 et e e —————aaaaaaan 144
ZEEO? ettt e et e e e et —t e e e e t—a e e e e —baee e e ataee e e nabaeeeatraaeeeatraaeeennns 145
1Y] o YU RRUPRRR 146
oo Lo Y SRR 147
T ettt ettt ettt e ettt et e et e et e ete e et 148
T o ettt ettt ettt ettt ettt ettt e et et eeaeeeaeeaeeareas 149
FACT ettt 150
FID ettt ettt ettt 151

GCA_ADS ettt 154
JCIMY . 155
PIIMIE? ettt ettt 156
Rationals.lisp -------------=======--emeeee oo 157
rational->deCimal-StriNgGccccceieieeee e 158
rational>decimal-liSt............cocooioiiiiiiiiiiiieee e 159
Modulus.lisp -=--==========ssmmmmmmmmmnanneee 160
MOAUIUS::AAT. o 161
MOAUIUSIISUD ..ottt 162
MOAUIUSIIMUL .ot 163
MOAUIUS IV e 164
MOAUIUSIIEXDT .ttt 165
MOAUIUSIIINVEISE .ottt 166
Primes.lisp --------=-==-=mmmmmmmmeeeeeeeeeeee 167
PriMe-NUMDBErS::KNOWN-PIIMESccueiuieiieiieieeiieiieieeiieie et sse s 168
Prime-numbers::Prime-tO-KNOWN?ccccoueiririieieieeseetee et 169
PriME-NUMDEISIIDIIME ...ttt ettt 170
PrIME-NUMBEISIINTR .ottt 171
Prime-NUMDBErS i PrIMOTIAlcceeiiiiiiiiieieietee e 172
Prime-NUMDBErS:iPrOGUCTccooueiiieiieieeieetet ettt 173
PrIME-NUMBEIS:TACTOIS .ottt 174
PriME-NUMDEIS:IfACLOIS™ ..ottt 175
PriMeE-NUMDEIS:iAIVISOIS..c.ocuiiuiiiiieiiiieieeteetee ettt 176
PrimMe-NUMBErS::PraCtiCal?ccccoeiiieieieieeeeeeeee et 177
prime-numbers::find-sum-from-diViSOrS..........cccccceoiiiniiniiseeeeeeee, 178
prime-numbers::find-sum-from-divViSOrs™..........cccooeveoiioineneieeeseeee e 179
prime-numbers::find-sum-from-liStcccccoevieieiieieiiieeeeeee e 180
prime-numbers::find-sum-from-=liSt*ccccoeviiiriiiiieeeeeeeeeeee 181
Continued fractions.lisp ----------------- 182
rational->continUed-fractionccceeeeeieieieeee e 183
rational<-continUed-fractioncccceeeeiniiiniiinecee e 184
quadratic->continUed-fraction...........cccoueieiiinieieieee s 185
Egyptian fractions.lisp ------------------- 186
rational->egyPtian-TraCtioN.......c.ccccueieereeeieeee e 187
rational->egyptian-fraction::flDONACCHccuevvviieieieiiieeseeeeeeee e 188
rational->egyptian-fraction::golomb..........ccccccoviieiiiiiiiieeeee e 189
rational->egyptian-fraction::SPItINGccoveeeereieieieeeesee e 190
rational->egyptian-fraction::DiNaArYccceceeciiereieieeseee e 191
rational->egyptian-fraction::Primorial...........cccccoeeeoiiirinireeieeseeeeeseea 192
rational->egyptian-fraction::@rdosccccecueieireeiee e 193
rational->egyptian-fraction::practical.............c.cccceeevieoieiniieieeeeeesee e 194
rational<-egyPtian-fraCtioN.........ccccueiiireriiieeeeseee e 195

Le_Lisp.lisp--------=======mmmmmmmmmeemeceneee 196

closure
gensym

Lambda

Calculus.lisp --------==-==enn----

Lambda XPreSSIONScueoiiiiieieeeeeeee e
COMDBINATOLS .ottt ettt e s e st e st e e nseeseeseeneenseeneas

Church
Utilities

Turtle graphics------=---ses-eemmemncennnan

turtle::a
turtle::b
turtle::b

<Y aTeleTo o Te TR RSOSSN

ACKGIrOUNT-COION ..o
ACKWAIT ..o

BUHIE: TOTWEIT oo e e e e

turtle::h
turtle::h

BUIHIE: T LOTE o e e e e e e e e e
PULHIEI I MOVETO oo

turtle::n
turtle::p
turtle::p
turtle::p
turtle::p
turtle::p
turtle::p

E Y -COLOT e
EI -G OWNY e

BUMHII OSSO e

turtle::ri

BURHIITTUIN oo

Tracing & Debugging --------------------

SYSIIDINAINGS ottt
SYSIDINAINGS-NAMES ...ttt
SYSIIDINAINGS-SSOC ..ttt
SYS:IClEAr-DINAINGS e
SYSIIAEDUG .ttt
SYSIIOITOI? ottt ettt
SYSIIPIINT-VAIUGS .ottt ens
SYSIIETACE ettt
SYSIIHTACE-MOTE .ot
SYSIIUNTIACE vttt ettt ettt ettt ettt

Options

options::
options::
options::
options::
options::
options::

INTEGEI-MOTE ...
INEEGEI-SUTTIX c.eveieieeee e
NUMBEr-AECIMAIS ...
NUMBDEI-TOIMAT ..o
QUOTE-AS-QUOLE ..ottt
Keyboard-mode..........c.ccooueiiiiiieieeceee e

Last words... ======smmmmmemeec e 257

Preface

Overview

My Lisp is a complete and universal Lisp environment running directly on the iPhone,
iPad, and Mac. This interpreter is true to the original John McCarthy Lisp implementation’
with the fundamental 7 operators quote, atom, eq, car, cdr, cons, cond, along with
lambda and label. My Lisp also contains core and mathematical operators borrowed from
other Lisp dialects (Le Lisp, Lisp 1.5, MacLisp, Common Lisp, and Scheme to name a few)
to make it easy to learn, program, and most importantly, enjoy Lisp. It also features built-
in functions for advanced mathematics, including complex numbers and numerical
analysis (roots and zeros finder, integral approximation), along with the classical LOGO
turtle. The complete description of the fundamental, core, and built-in functions is
available using a set of library functions completely written in My Lisp.

My Lisp offers an interpreter and an editor, all working on the iPhone, iPad, and Mac, and
most importantly, without requiring any server connection, that is, the interpreter is
executing locally on the iPhone, iPad, or Mac My Lisp is installed on.

Library and example files contain the source code of classical functions and problems
solved by My Lisp and may be used as reference to learn Lisp and develop other
programs. They include classical puzzles (hanoi and n-queens), basic mathematical
functions (gcd, lecm, factorial, fibonacci, prime?), and the historical apply, mapcar and
maplist functions. The Lambda Calculus example file contains various functions related to
Lambda Calculus and Combinators, with alpha-conversion, beta-reduction, de Bruijn
notations, etc. As a special note, the example file Symbolic Derivation contains a
complete yet extensible symbolic derivation module allowing to compute the formal
derivation of virtually any symbolic function expressed as a Lisp expression.

A user manual and a reference manual are available from within the application but also
on My Lisp web site (https://lisp.Isrodier.net) and in Apple Books. The complete source
code of the library and example files is part of My Lisp.

Last but not least, this overview couldnt end without a sample definition of the notorious
REPL function:

(define (REPL eval_me) (REPL (printIn (eval (read)))))

1 See “Recursive Functions of Symbolic Expressions and Their Computation by Machine,
Part 1”.

https://lisp.lsrodier.net

References

My Lisp for iPhone, iPad, and Mac:

https://apple.co/33RPzGZ https://apple.co/3IEufLi

AppStore Apple Books

My Lisp home page

https://lisp.Isrodie https://apple.co/3ejJSW2

Home Page Apple Books

https://apple.co/33RPzGZ
https://apple.co/3lEufLi
https://lisp.lsrodier.net
https://apple.co/3ejJSW2

Limitations

This manual is neither an introduction to Lisp nor a complete guide on how-to program
in Lisp. It does however contain the full description of the built-in and library functions of
My Lisp that are also available within the help file of My Lisp, and has many examples that
may be useful when learning Lisp.

A reference manual is not that useful without practice. Thus, you are encouraged to look
at the example files of My Lisp because they provide actual usage of the engine and core
functions. In particular the SICP file with many examples from the SICP book ; it is also a
good reference to cope with the differences between My Lisp and Scheme, especially
when it comes to lexical versus dynamic bindings.

(discover Lisp)

(enjoy Lispﬁ

(have fun)

Presentation Lisp expressions

Presentation

Lisp expressions

Syntax

An expression is either an atom or a list of zero or more expressions, separated by
whitespace(s) and enclosed by parentheses.

An atom is either a symbol name, a number, or a string where a string is a sequence of
characters enclosed within the double-quote character ". A symbol name is a sequence
of characters without any specific limitation (aside whitespaces and parentheses), that is

non “conventional” characters may be used to compound names like <, =, $, ?, or &.

Notes:

® The . character may be interpreted as a special character when parsing dotted pairs
or the arguments list of a define or lambda definition.

e The ? character may be interpreted as a special character when reading the names of
the formal arguments of a define or lambda definition. See the define and lambda
functions for further details.

Here are a few examples of atoms that are also symbols:

Hello Hello-World Bonjour-le-Monde
IsNull? Lispl.5::null Incr!

<= == ++

€ S £

Here are a few examples of atoms that are also numbers:
42.0 +42.0 -42.0

3.14 1.66e-27 6.022e23

117258

Here are a few examples of atoms that are also integer numbers:
42 +4212345678901234 -42

Here are a few examples of atoms that are also rational numbers:
42/61 +1/123456789012345 -42/61

Here are a few examples of atoms that are also strings (in their input format as opposed

to their printed format):
“A string” “Another \”string\”” “Back\\slash”

Here are a few examples of lists:
0 (This is a list) (A B (a nested list) E)

Pairs

Historically, the dotted pairs were the base elements after which the lists were built. My
Lisp acknowledges it and does support the dotted notation and the creation of dotted
pairs using the following 3 rules:

(X.Y)=(cons 'X"Y)
(car(X.Y)) =X

(cdr(X.Y)) =Y

When a list expression is parsed,

e |f a dot is encountered before the last symbol, then the last two elements of the lists
are combined into a dotted pair. Thatis, (car (AB.C))is A, (cdr (AB.C))is(B.C),
(cadr(AB.C))is B, and (cddr({AB.C))is C.

e If a dot is encountered before an open parenthesis then it is ignored. That is (A . (B.
(C.())is the same as (A B C) which is the preferred printed form.

e |f a dotis encountered in another situation, it is treated as a symbol.

The previous rules applied only when the dot character is separated from a symbol
character by a blank character; for instance (A.B) is a list of one atom A.B.

A dotted pair is built when parsing an expression with the previous rules or when
cons'ing an expression to a symbol. Building a list with a dot like (cons ‘A (cons . (B)))

Presentation Lisp expressions

results in a list (A . B) made of 3 symbols and the dot character is intended as a regular
symbol.

Comments

Comments are introduced by a semi-colon ; and extend up to the end of the line. They
are supported in both the editor and the console.

Special interests

My Lisp is mainly case-insensitive and almost any Unicode character may be used as part
of a symbol name except for parenthesis and blank characters. The mathematical
operators (=, !=, <, <=, >=, and >) are the only ones taking into account the case of the
characters when comparing strings:

? (eqv? “A” “a”)

t

? (eqv? ‘A ‘a)
? (= “A” “a”)
nil

? (= ‘A ‘a)

nil

137258

Floats, integers, and rationals

My Lisp supports floating point numbers based on IEEE- 754 double-precision numbers
(64-bit base-2 format), along with so-called big integers and rationals which precision is
limited only by the available memory.

The default behavior is to parse integer and rational strings as big integers, which in turn
are automatically converted to floating point values when required by the evaluated
functions. This implicit handling can be turned off or modified using the options::integer-
mode function.

By default, 1.0 is parsed as a floating point value whilst 1 is an integer, and 123/237 a
rational. You can also create a rational using an integer division as in (/ 123 237). Rationals
are always internally represented in their reduced form, thus 123/237 is actually printed
as 41/79. You can also print rationals using the function rational->decimal-string that
prints the decimal expansion with options to identify the period within that expansion.

?123/2317
41/19

? (rational->decimal-string 123/237)
0.{5189873417721}

? (rational->decimal-string 123/237 5)
0.52898...

? (rational->decimal-string 123/237 -20)
0.51898734172215189873...

? (rational->decimal-string 2646693125139304345/842468587426513207 37)
3.1415926535897932384626433832795028841...

See the rationals, egyptian fractions and continuous fractions files for examples of
computing with integers and rationals.

When a function that requires floating point numbers is invoked with integers or
rationals, the values are automatically converted (with a potential lose of precision
implied by floating points). You can however force the conversion using the ->float
function.

When mixing floating point and integer or rational numbers, the integer and rational
numbers are automatically converted to floating point numbers. For instance (+ 1 3)
evaluates to the integer 4 whilst (+ 1.0 3) evaluates to the floating point value 4.0. The
same rule occurs when mixing rational and floating point numbers:

? (+11/3)

4/3

? (+1.0 1/3)
1.3333

2(/13)
1/3

2 (/ 1.0 3)
0.3333

2 (+0.0 1/3)
0.3333

The function ->rational is converting an expression into a rational number; this comes
handy when the exact representation of a floating point number is required; in such case,
use the string representation of the floating point number as in (->rational “12.3”) instead
of (->rational 12.3) as in the later form the internal floating point representation 12.3 will
have introduced an approximation.

The interpreter

Evaluation rules

My Lisp interpreter follows common rules for interpreting Lisp expressions, that is:

® An atom (number, string,...) evaluates to itself.

¢ A symbol evaluates to its associated expression with respect to the binding context.
e Alist(Fabc..)isafunction call and evaluates as follows:

If Fis a built-in function then it is evaluated with a, b, c... as parameters. The values of
the parameters are bound to the binding context but evaluated only if required by
the evaluation of F.

If F is a library function, user-defined function, or lambda expression, then all
parameters not marked as lazy are evaluated, all lazy parameters are bound to the
binding context, and then F is evaluated. When F is a tail-recursive call then the
binding context is the current one, a new empty one is created otherwise.

The evaluation is left-recursive, that is if F is a list then it is first evaluated. For instance,
when evaluating ((if (> 0 1) + -) 3 2), the expression (if (> 0 1) + -) is first evaluated,
resulting to the original expression now equivalent to (- 3 2) and evaluated to 1.

A lazy parameter, introduced by the ? character as the leading character of a formal
parameter name is not evaluated until after the function body explicitly requires it. Lazy
parameters allow creating expressions that mimic the behavior of the built-in functions
like if or cond by deferring the evaluation until explicitly required. See the define function
for further details and examples on using lazy parameters.

Note that library functions, user-defined functions, and lambda expressions are nothing
more than regular lists starting with the lambda symbol or a symbol evaluating to such
lists. This means that My Lisp does not handle functions or lambda expressions as special
objects nor uses hidden objects during the evaluation:

? ((append (lambda (x y)) '((* x¥))) 6 7)
42

define

The define function is an extension of label allowing to create symbols with a
“permanent” association that is available after the expressions defining the symbols have
been evaluated. It is used to define or change the expression associated to with a symbol
within the current binding context, thus leaving unchanged other associations in other
binding contexts.

Expressions binding

The simple syntax to associate an expression to a symbol has the form (define name expr)
which associates to the symbol name the result of the evaluation of expr.

? (define h2g2 42)
h2g2

? h2g2
42

? (define adder (lambda (xy) (+ xy)))
adder

? (adder 4 5)
9

Functions binding

In order to simplify the declaration of lambda expressions, functions may also be defined
using any these 2 extended syntaxes:

(define (name argl arg2 ...)
body)

(define name (argl arg2 ...)
body)

which are both equivalent to:

(define name (lambda (argl arg?2 ...) body))

Under these forms body may be one or more expressions. Upon evaluation of the
function, the arguments arg1, arg2, ... are bound to their values in the current binding
context and then body is evaluated.

When body is made of 2 or more expressions, it is automatically evaluated as part of a
progn expression.

Variable number of parameters

If an argument is the dot character then all arguments of the function call following the
dot are merged into a list associated to the argument following the dot as in:
? (define (subto a . neg) (- a (apply + neq)))

subto

? (subto 101 2 3)
4

Note that the dot character may be the first argument if all parameters must be merged
into a list upon invocation.

Default values

A function argument may be expressed as a list of 2 elements (name expr) where name is
a symbol corresponding to the name of the argument and expr the default value to pass
for the argument if missing when the function is called; the expr is evaluated when the
function is actually defined as opposed to when invoked:

? (define (add x (v 5)) (+ xy))

add

? (add 2)
7

? (add 2 3)
5

Upon a function call, if an argument is omitted, it is implicitly assumed with the default
value nil.

If the body part of the function requires many expressions executed in sequence, you can
use the implicit progn form:
(define (maclisp::append L1 . L2)
(define (maclisp::append-helper A L)
(Gf (null? L) A
(maclisp::append-helper (append A (car L)) (cdr L))))
(maclisp::append-helper L1 L2)

? (maclisp::append '(a b c¢) '(d e) nil '(g))
(abcdefg)

Lazy parameters

When the name of the argument of a function or lambda starts with the ? character then
it is considered a lazy parameter: upon evaluation of the function, the expression of the
function call is not evaluated and passed as it; if the value is necessary, then it is up to the
function body to evaluate the parameter using eval. Lazy parameters allows creating
functions like if or cond that evaluate their arguments by necessity, thus working around
macros..

Examples:

? (define (_if test ?yes ?no) (if test ?yes ?no))
_if

?Cif't (+34) (*34)"
(+34)

? (') (+34) (*34))
(*34)

? (define (_if test ?yes ?no) (if test (eval ?yes) (eval ?no)))
_if

? (if 't (+ 3 4) (* 34))
7

Q'O (+34)(*34)
12

The handling of lazy parameters is also available when processing variable numbers of
parameters:

? (define (echo . ?L) (println ?L))

echo

? (echo 1 a (+ 3 4))"
(1a (+34))

set! and set!!

The set! function changes the value bound to a symbol. As opposed to define, set! can
change bindings in other binding contexts. Its general form is:

(set! name expr context)

The evaluation of the expression expr is assigned to the symbol name that is not
evaluated except in the following cases:

e |f name is a list then it is first evaluated to determine the actual name.

e When set! is invoked from within a function and name is the name of a formal
parameter in the calls stack then it is substituted with the actual parameter (which must
resolve as a symbol).

When the expr value is missing or nil then the symbol is actually removed from its
binding context.

The optional context parameter is the identifier of the binding context to look-up the
symbol from:

* When not given or invalid, then all binding contexts are searched for, starting from the
current one. When running through the binding contexts, set! stops at the first one with

a matching symbol. If no symbol is found then a new one is created in the current
binding context.

e When the binding context is root, core, data, user or an integer greater than 3 (the
minimum binding context the user can change and identified by the logical name user)
but lower than the current binding context then the search is limited to that context.
The example file gensym takes advantage of the context to “push” into the data
binding context its parameters such as making it useful and workable across any
binding contexts, whatever binding context the function is declared from.

The set!! function is a helper function to invoke the set! function if the name of the symbol
to bind to is actually the value of the symbol name when it is not a function call argument
or list. This function comes handy to avoid expressions like (eval (list quote name)) and
mainly used when the gensym function or any similar mechanism is used to obtain a
symbol name. See the closure function described in the “lexical versus dynamic bindings”
paragraph or the make-accumulator function of the SICP example file.

Examples:

? (define (f a b) (set! a b))
f

? (define x 1)

X

? (f 'x 42)

X

?x
42

? (set! y)
y

? (f'y 6)
y

?y

nil

In this example, y remains unbound after the call to (f 'y 6) because the set! function
assigned a value to the y symbol in the binding context of the function f, and thus
destroyed when the function returned. This did not occur for x because set! found the
symbol in a previous calling binding context and set it. In order to keep the binding for y
regardless of whether it is defined or not, f must force the assignment into a specific
context:

? (define (f a b) (set! a b ‘data))
f

? (set! y)
y

? (f'y 6)
y

?y
6

See the sys::bindings, sys::bindings-names and sys::bindings-assoc functions for listing
the binding contexts.

See the Startup paragraph for details regarding the initial creation and loading of the
binding contexts.

car, cdr, and all variations

The car and cdr functions are among the most used functions when writing Lisp
programs. In order to simplify the combinations of nested car and cdr, they may be
grouped together in a single word cxr where x is any number of combination of the
letters a and d as in: car, caar, cadr, caaaadadr, etc. The “letters” are applied from right to
left, thus (cadr ...) is equivalent to (car (cdr ...)). All these functions are considered built-in
functions.

print, println, and error

When executed from within the console, all the evaluations of the expressions are
automatically printed using the printin function; however when loading a file or
executing the code of the editor, only explicitly printed messages with the functions print,
println, or error are printed. In order to override this behavior, you need to call the print
function with the special string “;**SYS.OPT: PRINT=YES". To turn off and get back to the
default behavior just invoke print with the string “;**SYS.OPT: PRINT=NO". These 2
special evaluations are not printed.

Built-in functions

Built-in functions have precedence over any other expressions when evaluating, thus
their behavior cannot be changed nor overridden by a define or set! expression; for
instance the instruction (set! cons <expression>) associates an expression to the symbol
cons within a binding context but the built-in cons remains the function that is invoked by
the interpreter upon evaluation of (cons a b).

Following this example, things can get tricky when eval or apply are used to evaluate
cons because cons as a symbol now evaluates to the expression assigned to by the set!
instruction:

? cons

cons ; cons symbol is a built-in

? (set! cons (lambda (a b) (print “hello ” a “ + “ b)))

cons

? cons ; cons symbol association
(lambda (a b) (print “hello ” a “ + “ b))

? (cons ‘alpha ‘(beta)) ; built-in cons is used to evaluate
(alpha beta)
? (apply ‘cons ‘(alpha beta)) ; built-in cons is used to evaluate

(alpha . beta)

? (apply cons ‘(alpha beta)) ; associated value of cons is used
hello alpha + beta

Presentation The Lisp interpreter

Tail-recursive functions

My Lisp is properly tail-recursive, thus iterations may be implemented using tail-recursive
calls without risking stack overflow issues. The REPL function given in the overview is an
example of a function taking advantage of tail-recursion to avoid using the progn for
looping back to the read-eval-print sequence:

(define (REPL eval_me)
(REPL (println (eval (read)))))

24 /258

Presentation Dynamic binding

Dynamic binding

What is dynamic binding?

My Lisp uses dynamic binding because it is very powerful but yet simple to put in place
and understand. The interpreter environment is unique and may be viewed as a stack
where the bindings are pushed and popped. From an implementation point of view, this
means that the interpreter does not need hidden structures to manage things like
continuations: the free symbols of lambda expressions have values depending on when
the lambda expressions are evaluated as opposed to when created.

The following example illustrates the handling of free variables with the addx function
that is not adding 4 to its argument in the general case because the variable x is free
inside the returned lambda:

(define addx

(et ((x4))
(lambda (p) (+ xp))))

? addx
(lambda (p) (+ x p))

? (define x 2)

X

? (addx 3)
5

? (define x 4)

X

? (addx 3)

Here is another example from Richard Stallman Emacs presentation text:

(define fool (x) (foo2))
(define foo2 () (+x5))

25/ 258

https://www.gnu.org/software/emacs/emacs-paper.html#SEC17

Presentation Dynamic binding

? (fool 2)
7

The function foo2 is executing in a binding environment where the variable x has been
bound to the value of the parameter used when invoked the function foo.

Current bindings

The interpreter binding contexts can be viewed as a stack where the bindings between
the symbols and the values are stacked upon function calls or when the functions define
and set! are invoked:

e The define function adds or changes the value associated to a symbol at the current
level of the binding contexts.

® The set! function is able to change the value associated to a symbol at any level of the
binding contexts.

It is possible to access the current bindings using the library functions sys::bindings,
sys::binding-names, and sys::bindings-assoc.

Lexical versus dynamic binding

Whenever necessary, it is somehow easy to add lexical binding (aka closures) to any
expression using the gensym and closure functions directly borrowed from Le Lisp and
defined in the sample file Le_Lisp.lisp:

(define add4

(let ((x 4))

(closure ‘(x)
(lambda (p) (+ x p)))))

? (add4 3)
7

26 /258

? (define x 42)

X

? (add4 3)
7

See the description of the closure function in Le_Lisp section for further details and
examples. In particular, the clet function example for a lexically scoped version of let that
is compatible with Scheme.

Startup

Initially the interpreter is loaded with all the built-in functions and symbols, and then
further enhanced with the library files Math, Tools, Gensys, Closure, Dictionary, Stack,
Rationals, and Turtle. Then the console interpreter is loaded with all the user symbols
defined during previous sessions in the data and user binding contexts.

The binding contexts can be represented by the following diagram:
0 root
1 core

2 data

3 user

The root binding context is the top-level context and contains common symbols like nil
and t. The core binding context is where all library files are initially loaded. Both the root
and core binding contexts are considered system contexts and you should not try to
amend them ; the system is not preventing writing them but any change won't be saved
and restored across sessions. The data binding context is a special context intended to
save the values of special variables like counters; for instance gensym uses it to save the
current state of its parameters such as they can be restored properly across sessions. The
data binding context is intended for the set! function when values should be persisted
across sessions. The user binding context is the “initial” binding context when entering
the interpreter; it is also the binding context where the load function is executed, thus all
defined symbols during the loading of a file are ending up there.

At any time during the execution of the interpreter, the current binding context is at least
the user one; when looking for the value associated to with a symbol, the interpreter
starts from the current binding context up to the root one. As far the set! function is
concerned, it is possible to address any specific environment to change the value

associated to a symbol; don't forget however that only the data and user binding
contexts are saved and restored across sessions.

See the sys::bindings, sys::bindings-names and sys::bindings-assoc functions for
enumerating the binding contexts. See set! for changing the bindings.

Note that in older versions of My Lisp, the user context was named base. You can still use
this name for compatibility reasons, but are not encouraged to.

Presentation Common questions

Common questions

Can | create macros or syntactic definitions ?

My Lisp does not support macros as intended by Scheme or other Lisp dialects. It does
however provides the universal function define that offers many extensions over the
standard define ones (define, defun, de, ...) with non-evaluated parameters ?x, variable
number of arguments, and default values.

Where are begin, defun, etc?

My Lisp implements the core functions using a naming convention that may not match
the dialect of Lisp you are used to; for instance Scheme begin is progn. My Lisp also tries
to expose a minimal set of functions, leaving out some; for most of the cases this is not a
problem as you can easily implement and add them into a library file as My Lisp itself
does with the file Tools.lisp and the classical apply and mapcar functions. You can also
use the define function to create synonyms as in (define defun define): from now on you
can use defun to declare functions; this does not change the semantic behavior of define
but let you write expressions with your favorite keywords.

Mathematics ?

For some historical reasons My Lisp ships with some numerical analysis methods and
complete complex numbers support. Thus you will be able to solve common numerical
problems using Lisp recipes. You can also experience formal mathematics with the
symbolic derivation module that computes the formal derivation of virtually any symbolic
function expressed as a Lisp expression (or in “standard” mode using the conversion
functions available in the infix sample file); feel free to expand the source code with your
own rules and recipes. Numbers (integers and floating points) are based on IEEE- 754
double-precision numbers (64-bit base-2 format).

My Lisp also support so-called big integers and rationals which precisions are limited
only by the available memory. The default behavior is to parse integer and rational
strings are big integers, which in turn are automatically converted to floating point values
when required by the evaluated functions. This implicit handling can be turned off or
modified using the options::integer-mode function.

30/258

McCarthy

[built-in functions] McCarthy

quote

SYNOPSIS
'<expr>

(quote <expr>)

DESCRIPTION

QUOTE returns its <expr> argument as-is and not evaluated.

RETURN VALUE
SEXPR

EXAMPLES
?'a

a

? (quote a)

a

?'(abc)
(abce)

32/258

[built-in functions] McCarthy

atom

SYNOPSIS

(atom <expr>)

DESCRIPTION

ATOM returns T if <expr> evaluates to an atom or the empty list, NIL otherwise.

RETURN VALUE
T or NIL

EXAMPLES
? (atom 'a)
t

? (atom '(a b ©))

nil

? (atom (atom 'a))
t

? (atom '(atom 'a))

nil

337258

[built-in functions] McCarthy

€q

SYNOPSIS
(eq <exprl> <exprz>)

DESCRIPTION

EQ returns T if the values of <expr1> and <expr2> are the same atom or both the empty
list, NIL otherwise.

RETURN VALUE
T or NIL

EXAMPLES
? (eq'a'a)
t

?(eq'a'b)

nil

?(eq'0'0)
t

34 /258

[built-in functions] McCarthy

car

SYNOPSIS

(car <expr>)

DESCRIPTION

CAR returns the first element of the value of <expr>. If the value of <expr> is not a list
then NIL is returned. Note that CAR and CDR may be combined together as in CADR,
CAAADR, CDAR, etc.

RETURN VALUE
EXPR or NIL

EXAMPLES
?(car'(ab o))

a

? (cadr'(abc))
b

357258

[built-in functions] McCarthy

cdr

SYNOPSIS
(cdr <expr>)

DESCRIPTION

CDR returns the tail of the value of <expr>, that is all elements but the first one. If the
value of <expr> is not a list then NIL is returned. Note that CAR and CDR may be
combined together as in CADR, CAAADR, CDAR, etc.

RETURN VALUE
EXPR or NIL

EXAMPLES
?(cdr'(abc))
(bc)

?(caddr'(abcd))

C

? (cddadr '(a (xy z) b c d))
(2)

36/258

[built-in functions] McCarthy

cons

SYNOPSIS
(cons <exprl> <expra>)

DESCRIPTION

CONS returns a list containing the value of <expr1> followed by the elements of the
value of <expr2>. If the value of <expr2> is not a list then NIL is returned.

RETURN VALUE
EXPR or NIL

EXAMPLES
? (cons 'a'(b ¢))

(abce)

? (cons 'a (cons 'b (cons 'c'()))
(abc)

? (car (cons 'a'(b c)))

a

? (cdr (cons 'a '(b ¢)))
(b o)

37 /258

[built-in functions] McCarthy

cond

SYNOPSIS

(cond (<test> <expr> <expr>...) (<test> <expr> <expr>...) ...)

DESCRIPTION

COND evaluates the <test> expressions from left to right until one returns T. When one is
found, COND evaluates all the corresponding <expr> expressions from left to right and
returns the value of the last one. If no test is found or no expression is associated with the
test, then NIL is returned.

RETURN VALUE
EXPR or NIL

EXAMPLES
? (cond ((eq 'a 'b) 'first) ((atom 'a) 'second))

second

? (cond ((eq 'a 'b) 'first) ('t 'else))

else

387258

[built-in functions] McCarthy

lambda

SYNOPSIS
(lambda (<p> <p>...) <expr>)

(lambda <p> <expr>)

DESCRIPTION

LAMBDA defines a function with the formal parameters <p> and the <expr> as body.
Upon evaluation of the lambda, a new environment is created with the invocation
parameters bound to the formal parameters.

If a space-delimited period character precedes the last formal parameter, then upon
invocation the last variable is bound to a list with all the tail parameters; the second
declaration form is actually a shortcut for (lambda (. <p>) <expr>).

RETURN VALUE
LAMBDA EXPRESSION

EXAMPLES
? ((lambda (f) (f'(b ©))) '(lambda (x) (cons 'a x)))
(abo)

? (lambda x x) 34 5 6)
(83456)

? (lambda (. x) x) 345 6)
(3456)

? (lambda (xy.z)z)3456)
(56)

39/258

[built-in functions] McCarthy

label

SYNOPSIS
(label name (lambda...))

DESCRIPTION

LABEL defines a named lambda expression and was originally used to simplify recursive
calls. See the DEFINE function that is more suitable for naming expressions.

RETURN VALUE
LAMBDA EXPRESSION

EXAMPLES
? ((label recar (lambda (x) (cond ((atom x) x) ('t (recar (car x)))))) '((@bc)cde))

a

40/ 258

Core

41/258

define

SYNOPSIS
(define <name>(<p> <p>...) <expr>...)
(define (<name> <p> <p>...) <expr>...)

(define <name> <expr>)

DESCRIPTION

DEFINE associates the named symbol <name> to the lambda expression (LAMBDA (<p>
<p>...) <expr>). In its third form, the <expr> expression must be a single expression that
is first evaluated and then associated to <name>. As opposed to LABEL, DEFINE
modifies the binding of <name> within the current environment whilst LABEL creates a
new binding.

If a space-delimited period character precedes the last formal parameter, then upon
invocation the last variable is bound to a list with all the tail parameters. There is no
requirement for a minimum number of parameters, thus (define (f . z) <sexpr>)
introduces a function where z will be associated to (1 2 3 4) when evaluating (f 1 2 3 4).

Upon invocation of the LAMBDA expression arguments are always passed by value,
which means that the actual argument expressions are evaluated before the procedure
gains control, whether the lambda expression needs the result of the evaluation or not.

However, if the name of the parameter starts with a ? character, the evaluation rules does
not apply to this parameter and it will be up to the lambda to evaluate the parameter if
needed. This mechanism allows redefining all functions, including the built-in ones like if,
cond, etc.; see the example of the _if function below or WHEN and UNLESS functions in
Tools.lisp for further details.

A parameter <p> may be given in the form of a list (<pn> <pv>) where <pn> is the actual
name of the parameter and <pv> the default for the parameter when missing during the
function call; the <pv> expression is evaluated when the function is defined. If a
parameter is not explicitly associated to with a default value then NIL is assumed.

RETURN VALUE
EXPR

EXAMPLES
? (define fact(n) (if (<=n 1) n (* n (fact (- n 1)))))

fact

? (fact 4)
24

? (define x (car '(a b ¢)))

X

?x

a

? (define zz car)

ZZ

?(zz'(abo))

a

? (define (zza b . c) (cdr ¢))

ZZ

?(zz'a'b'c'd'e)

(de)

? (define (_if test ?yes ?no) (if test ?yes ?no))
_if

?(if't(+34)(*34))
(+34)

? (f'0) (+34) (¥ 34))
(*34)

? (define (_if test ?yes ?no) (if test (eval ?yes) (eval ?no))

_if

? (Lif't (+ 34) (* 3 4))
7

PCE'QO(+34)(*34))
12

? (define (addxy (x 2) (v 40)) (+ xy))
addxy

? (addxy 1 2)
3

? (addxy 1)
41

? (addxy)
42

[built-in functions] Core

eval

SYNOPSIS

(eval <expr>)

DESCRIPTION

EVAL returns the evaluation of the <expr> expression.

RETURN VALUE
EXPR

EXAMPLES
? (eval '(+ 4 B))
9

? (eval '(if (< 1 2) 'first 'second))
first

45/ 258

[built-in functions] Core

if

SYNOPSIS

(if <test> <then-expr> <else-expr> <else-expr>...)

DESCRIPTION

IF evaluates the <test> expression ; if it is T then the <then-expr> is evaluated and
returned; otherwise all the <else-expr> expressions are evaluated from left to right and
the value of the last one is returned. If no <else-expr> is found then NIL is returned.

RETURN VALUE
EXPR or NIL

EXAMPLES
? (if (eq 'a 'b) 'first 'second)

second

46 /258

[built-in functions] Core

list

SYNOPSIS

(list <expr> <expr> <expr>...)

DESCRIPTION

LIST returns the list made of all the <expr> expressions evaluated from left to right. LIST
without <expr> returns NIL.

RETURN VALUE
EXPR or NIL

EXAMPLES
? (list (cons 'a '(b ¢)) 'second 'third 4 5 6)
((a b c) second third 4 5 6)

47 /258

load

SYNOPSIS

(load filename ...)

DESCRIPTION

LOAD reads and evaluates the expressions contained in the My Lisp source code file
"filename". If more than one file is given then the files are loaded from left to right,
sequentially.

A filename is a string or atom pointing to a file of the underlying files system. If a user file
and a system file have the same name, the user file is loaded; in order to force a system
file, the filename must be prefixed by the # character. User files are searched in My Lisp
folder of the local device, and then in the My Lisp folder of iCloud. The / character is used
to denote the path separator. There is no need to append to lisp extension to the
filename as it is automatically appended.

Note that files are loaded and interpreted within the root context of the interpreter, thus
symbols and definitions remain available even if loaded from nested functions; a side-
effect is that the interpretation of the files depends only of the symbols and functions
defined in the root context.

Upon loading, all outputs are disabled except for the PRINT and PRINTLN ones.

RETURN VALUE
T or NIL

EXAMPLES
? (load "#HelpFile")
T

? (load "my samples/testl")
T

[built-in functions] Core

progn

SYNOPSIS

(progn <expr> <expr>...)

DESCRIPTION

PROGN evaluates all the <expr> expressions from left to right and returns the value of
the last one. PROGN without <expr> returns NIL Note that when using DEFINE in the
form (define (<name> <args>) <body>) with a <BODY> of at least 2 expressions, a
PROGN is explicitly created and used to evaluate the BODY expressions.

This function is also known as BEGIN in Scheme.

RETURN VALUE
EXPR or NIL

EXAMPLES
? (progn (car '(a b c)) (cdr '(a b c)))
(bc)

49 /258

set!

SYNOPSIS

(set! <name> <expr>)

DESCRIPTION

SET! associates the named symbol <name> to the evaluation of <expr>. If <name> is a
list then it is first evaluated to determine the actual symbol name. If <expr> is omitted
then the expression associated to with the named symbol <name> is removed from the
bindings. When there is no symbol with the given name then SET! is equivalent to

DEFINE.

Typically this function is used to change the value associated to with an existing symbol
outside the immediate binding context and thus has an important side-effect.

Note that built-in functions have precedence over other functions when evaluating, thus
SET! does not change the evaluation result of a built-in symbol.

RETURN VALUE
EXPR

EXAMPLES
? (define x 12)

X

? (define (addx n) (set! x (+ x n)))
addx

? (addx 3)

X

?x
15

[built-in functions] Core

while

SYNOPSIS

(while <test> <expr> <expr>...)

DESCRIPTION

WHILE evaluates the <test> expression ; if it is T then the <expr> are evaluated from left
to right, and then it repeats the same evaluations from the <test> expression. Otherwise,
the value of the last evaluation is returned.

Obviously WHILE expects some change(s) to the evaluation environment using DEFINE
to avoid an infinite loop.

RETURN VALUE
EXPR

EXAMPLES
? (define a 10)

a

? (while (> a 0) (define a (- a 1)) (print a))
9876543210

517258

[built-in functions] Core - 1/0

error

SYNOPSIS

(error <expr> <expr>...)

DESCRIPTION

ERROR evaluates all the <expr> expressions from left to right and prints them onto the
current error console. A newline is appended after the last printed expression. Then the
current input processing is stopped and the interpreter back to the top level.

RETURN VALUE
NONE

EXAMPLES
? (error "Not useful within REPL!")

Not useful within REPL!

52 /258

[built-in functions] Core - 1/0

printin

SYNOPSIS
(println <expr> <expr>...)

DESCRIPTION

PRINTLN evaluates all the <expr> expressions from left to right and prints them onto the
current output console. A newline is appended after the last printed expression.

This function is also known as DISPLAY/NEWLINE in Scheme.

RETURN VALUE
NONE

EXAMPLES
? (println "hello world")
Hello world

537258

[built-in functions] Core - 1/0

print

SYNOPSIS
(print <expr> <expr>...)

DESCRIPTION

PRINT evaluates all the <expr> expressions from left to right and prints them onto the
current output console.

This function is also known as DISPLAY in Scheme.

RETURN VALUE
NONE

EXAMPLES
? (println "hello world")
Hello world

54/258

[built-in functions] Core - 1/0

read

SYNOPSIS
(read)

DESCRIPTION

READ reads the next SEXPR from the standard input, typically the current interpreter
console. If the user enters more than one SEXPR, then READ returns the first one and the
next call will return the next ones.

RETURN VALUE
SEXPR

EXAMPLES
? (read)

(*23) ;assuming the user entered (* 2 3)

? (eval (read))

6 ; assuming the user entered (* 2 3)

55/258

[built-in functions] Core - 1/0

read-string

SYNOPSIS
(read-string)

DESCRIPTION

READ-STRING reads a string from the standard input, typically the current interpreter
console. As opposed to READ, the input is not parsed into a SEXPR. The string is made of
all characters up to (but not including) the ENTER key the user pressed to validate the
input.

RETURN VALUE
STRING

EXAMPLES
? (string? (read-string))
t

56/258

[built-in functions] Core - predicates

eqv?

SYNOPSIS
(eqv? <exprl> <expra>)

DESCRIPTION

EQV? returns T if the values of <expr1> and <expr2> are the same or equivalent, NIL
otherwise. Typically if 2 expressions have the same type and the same string
representations then they are equivalent.

Note that EQV? does not perform lambda-calculus alpha and beta reductions, thus
considers (lambda (x) x) and (lambda (y) y) two different expressions.

RETURN VALUE
T or NIL

EXAMPLES
? (eqv?'a'a)
t

? (eqv?12)

nil

? (eqv? '(1 2 3) "(1 2 3)")

nil

? (eqv?'(123) '(12 3))
t

? (eq'(123)'(123))

nil

57 /258

[built-in functions] Core - predicates

integer?

SYNOPSIS

(integer? <expr>)

DESCRIPTION

INTEGER? returns T if the value of <expr> is an integer, NIL otherwise. Note that a
floating point number is not an integer in the sense of INTEGER?.

An integer is also a number, and a rational with 1 as denominator is an integer.

RETURN VALUE
T or NIL

EXAMPLES
? (integer? 42)
t

? (integer? 42.0)

nil

? (integer? (/ 4 2))
t

58/258

[built-in functions] Core - predicates

list?

SYNOPSIS

(list? <expr>)

DESCRIPTION

LIST? returns T if the value of <expr> is a list, NIL otherwise.

RETURN VALUE
T or NIL

EXAMPLES
? (list? '(ab c))
t

? (list? 'a)

nil

? (list? '0)
t

59/258

[built-in functions] Core - predicates

null?

SYNOPSIS

(null? <expr>)

DESCRIPTION

NULL? returns T if the value of <expr> is the empty list, NIL otherwise. It is defined by
(define (null? x) (eq x '())).

RETURN VALUE
T or NIL

EXAMPLES
? (mull? '(abc))

nil

? (null? 'a)

nil

? (null? '()
t

? (null? nil)

t

? (null? (cdr '(a)))
t

60/ 258

[built-in functions] Core - predicates

number?

SYNOPSIS

(number? <expr>)

DESCRIPTION

NUMBER? returns T if the value of <expr> is a number, NIL otherwise. The NaN
expression returned by most mathematical function returns T against NUMBER? even
though it indicates an invalid one.

RETURN VALUE
T or NIL

EXAMPLES
? (number? '(a b ¢))

nil

? (number? 3)

t

? (number? (+ 3 4))

t

61/258

[built-in functions] Core - predicates

procedure?

SYNOPSIS

(procedure? <expr>)

DESCRIPTION

PROCEDURE? returns T if the value of <expr> is a procedure, NIL otherwise. A procedure
is either a built-in function or a user function defined as a list starting with the LABEL or
LAMBDA symbol.

RETURN VALUE
T or NIL

EXAMPLES
? (procedure? car)
t

? (procedure? 'car)

nil

? (procedure? (lambda (x) (* x x)))

t

? (procedure? '(lambda (x) (* x x)))

nil

? (define f (lambda (x) (* x x)))
f

? (procedure? f)
t

62 /258

[built-in functions] Core - predicates

rational?

SYNOPSIS

(rational? <expr>)

DESCRIPTION

RATIONAL? returns T if the value of <expr> is a rational, NIL otherwise. Note that an
integer is a rational but a floating point number is not a rational in the sense of
RATIONAL?.

A rational is also a number, and a floating point value is a number for NUMBER? but not a
rational for RATIONAL?.

RETURN VALUE
T or NIL

EXAMPLES
? (rational? 42/67)
t

? (rational? 42.0)

nil

? (rational? 42)

t

? (define (float? u) (and (number? u) (not (rational? u))))

float?

63 /258

[built-in functions] Core - predicates

string?

SYNOPSIS

(string? <expr>)

DESCRIPTION

STRING? returns T if the value of <expr> is a string, NIL otherwise.

RETURN VALUE
T or NIL

EXAMPLES
? (string? '(a b c))

nil

? (string? 3)

nil

? (string? "hello world")
t

64 /258

[built-in functions] Core - strings

string->code

SYNOPSIS
(string->code <string>)

(string->code <string> <index>)

DESCRIPTION

STRING->CODE returns the UNICODE integer value of the character at the 0-based
<index> position in the string parameter <string>; in its first form, the position is 0. If the
parameter is not a string or the index an invalid position then NAN is returned.

RETURN VALUE
INTEGER NUMBER or NAN

EXAMPLES
? (string->code "ABC")
65

? (string->code "ABC" 1)
66

? (string->code "ABC" 3)

nan

? (string->code "12&)4" 2)
128515

65/258

[built-in functions] Core - strings

string<-code

SYNOPSIS

(string<-code <value>)

DESCRIPTION

STRING<-CODE returns a one character string from its UNICODE value. If the code value
is not an integer then NIL is returned.

RETURN VALUE
STRING or NIL

EXAMPLES

? (string<-code 65)

IIA.II

? (string<-code 128515)

IIQWD"

66 /258

[built-in functions] Core - strings

string-index

SYNOPSIS

(string-index <source> <pattern>)

DESCRIPTION

STRING-INDEX returns the 0-based index of the string <pattern> within the string
<source>. If the <pattern> string is not found or the arguments are invalids, then NAN is
returned.

RETURN VALUE
INTEGER NUMBER or NAN

EXAMPLES
? (string-index "hello world" "world")
6

? (string-index "hello world" "he")
0

? (string-index "hello world" "monde")

nhan

? string-index "12(&) 456" "4")
4

67 /258

[built-in functions] Core - strings

string-length

SYNOPSIS
(string-length <string>)

DESCRIPTION

STRING-LENGTH returns the number of characters in the string argument. If <string> is
not a string, then 0O is returned.

RETURN VALUE
NUMBER

EXAMPLES
? (string-length "hello world")
11

? (string-length "12()456")
6

68 /258

[built-in functions] Core - strings

string->list

SYNOPSIS
(string->list <string>)

(string->list <string> <sep>)

DESCRIPTION

STRING->LIST splits its <string> argument into a list of strings. When the field separator
<sep> is omitted, the whitespace is assumed.

RETURN VALUE
LIST

EXAMPLES

? (string->list "hello world, bonjour le monde")

("hello" "world," "bonjour" "le" "monde")

? (string->list "hello world, bonjour le monde" ",")

("hello world" " bonjour le monde")

69 /258

[built-in functions] Core - strings

string->lower

SYNOPSIS

(string->lower <string>)

DESCRIPTION

STRING->LOWER returns the string argument with all its characters converted to lower-
case.

RETURN VALUE
STRING

EXAMPLES

? (string->lower "ABc")

abc

70/ 258

[built-in functions] Core - strings

string->number

SYNOPSIS

(string->number <string>)

DESCRIPTION

STRING->NUMBER parses its <string> argument into a number. It uses the exact same
rules as My Lisp parser, thus the number format is culture independent. The special
number NAN is returned is the argument is not a string or cannot be parsed.

Note that “12.3" is parsed as a floating point number; if the exact rational number is
required, you must use the ->RATIONAL function.

RETURN VALUE
NUMBER

EXAMPLES
? (+ (string->number "1.2345") 2)
3.2345

717258

[built-in functions] Core - strings

string->string

SYNOPSIS
(string->string <string> <startIndex>)

(string->string <string> <startIndex> <length>)

DESCRIPTION

STRING->STRING extracts a substring from a string starting at the given start index with
the first character at offset 0. When <length> is missing, the tail of the string is returned;
otherwise as many characters as indicated are returned.

RETURN VALUE
STRING

EXAMPLES
? (string->string "bonjour le monde" 8)

"le monde"

? (string->string "bonjour le monde" 8 2)

lllell

? (string->string "12&) 456" 1 3)

ll2@4ll

72 /258

[built-in functions] Core - strings

string->symbol

SYNOPSIS

(string->symbol <string>)

DESCRIPTION
STRING->SYMBOL converts the string argument into a symbol.

RETURN VALUE
ATOM

EXAMPLES
? (define x '(1 2 3))

X

? (string->symbol "x")

X

? (eval (string->symbol "x"))
(123)

? (string->symbol (string<-code 128515))

QW’)

737258

[built-in functions] Core - strings

string->upper

SYNOPSIS

(string->upper <string>)

DESCRIPTION

STRING->UPPER returns the string argument with all its characters converted to upper-
case.

RETURN VALUE
STRING

EXAMPLES
? (string->upper "abC")
"ABC"

74 /258

[built-in functions] Core - strings

->string

SYNOPSIS

(->string <expr> <expr>...)

DESCRIPTION

->STRING concatenates the string representation of its arguments and returns the
resulting string.

RETURN VALUE
STRING

EXAMPLES
? (->string 1 2 'hello (+ 3 4))
"12hello7"

75/ 258

[built-in functions] Core - math

->float

SYNOPSIS

(->float <expr>)

DESCRIPTION

->FLOAT forces the conversion of an integer or rational into its closest floating point
number representation.

RETURN VALUE
NUMBER

EXAMPLES
?(/13)
1/3

? (/ 1 (->float 3))
0.3333

76 /258

[built-in functions] Core - math

->integer

SYNOPSIS

(->integer <expr>)

DESCRIPTION

->INTEGER forces the conversion of a number into an integer. The result is the same as
the function TRUNCATE except that the type of the result is always an integer.

RETURN VALUE
INTEGER NUMBER

EXAMPLES
? (->integer 12.3)
12

? (integer? (truncate 12.3))

nil

? (integer? (->integer 12.3))
t

77 /258

[built-in functions] Core - math

->rational

SYNOPSIS

(->rational <expr>)

DESCRIPTION

->RATIONAL converts an expression into a rational. When <expr> is a string, its usual

decimal form representation is assumed; that is “12.3" is a valid representation whilst
123/10 is not valid.

This function is especially useful when the exact representation of a decimal number is
required without losing precision du to floating point approximations (see example
below).

RETURN VALUE
RATIONAL NUMBER or NAN

EXAMPLES
? (->rational “12.3”)

123/10

? (->rational 12.3)

3462142213541069/281474976710656

? (rational->decimal-string (- (->rational 12.3) (->rational "12.3")))
0.000000000000000710542735760100185871124267578125

78 /258

[built-in functions] Core - math

->denominator

SYNOPSIS

(->denominator <expr>)

DESCRIPTION

->DENOMINATOR returns the denominator of the rational number <expr>.

RETURN VALUE
INTEGER NUMBER

EXAMPLES
? (->denominator 42/67)
67

? (->denominator 2/6)
3

? (->denominator 42)
1

79 /258

[built-in functions] Core - math

->humerator

SYNOPSIS

(->numerator <expr>)

DESCRIPTION

->NUMERATOR returns the numerator of the rational number <expr>.

RETURN VALUE
INTEGER NUMBER

EXAMPLES
? (->numerator 42/67)
42

? (->numerator 10/15)
2

? (->numerator 42)
42

80/258

[built-in functions] Core - math

nan?

SYNOPSIS

(nan? <expr>)

DESCRIPTION

NAN? returns T if the value of expression <expr> is the 'not a number' or an undefined
one (NAN or infinity), NIL otherwise.

RETURN VALUE
T or NIL

EXAMPLES
? (NAN? (/ 1 0))
t

? (NAN? 1)

nil

81/258

[built-in functions] Core - math

SYNOPSIS
(= <exprl> <expr2>...)

DESCRIPTION

= returns T if the values of expressions <expr1>, <expr2>, ..., are all equal; NIL otherwise.

RETURN VALUE
T or NIL

EXAMPLES
?(=11)
t

? (=12)

nil

2(=1(-21)(/44)
t

82 /258

[built-in functions] Core - math

<

SYNOPSIS

(< <exprl> <expr2>...)

DESCRIPTION

< returns T if the values of the expressions <expr1>, <expr2>, ..., are monotonically
increasing; NIL otherwise.

RETURN VALUE
T or NIL

EXAMPLES
?(<1357)
t

?(<13257)

nil

?(<13357)

nil

?(<31)

nil

? (define x 5)

X

?(<x7)

83 /258

[built-in functions] Core - math

<=

SYNOPSIS

(<= <exprl> <expra2>...)

DESCRIPTION

<= returns T if the values of the expressions <exprl1>, <expr2>, ..., are monotonically
nondecreasing; NIL otherwise.

RETURN VALUE
T or NIL
EXAMPLES
?(<=13817)

t
?(<=132517)
nil
?(<=133517)
t

?(<=31)

nil

? (define x 5)

X

?(<=xT7)

84 /258

[built-in functions] Core - math

>=

SYNOPSIS

(>= <exprl> <expra2>...)

DESCRIPTION

>= returns T if the values of the expressions <expr1>, <expr2>, ..., are monotonically
nonincreasing; NIL otherwise.

RETURN VALUE
T or NIL

EXAMPLES
?(>=7531)
t

?(>=75231)

nil

?(>=75331)
t

?(>=18)

nil

? (define x 5)

X

? (>=1x)

85/258

[built-in functions] Core - math

>

SYNOPSIS

(> <exprl> <expr2>...)

DESCRIPTION

> returns T if the values of the expressions <expr1>, <expr2>, ..., are monotonically
decreasing; NIL otherwise.

RETURN VALUE
T or NIL

EXAMPLES
?(>7531)
t

?(>75231)

nil

?(>75331)

nil

?(>13)

nil

? (define x 5)

X

? (> 7x%)

86 /258

[built-in functions] Core - math

+

SYNOPSIS

(+ <exprl> <expr2>...)

DESCRIPTION

+ returns the sum the values of the expressions <expr1>, <expr2>, etc.

RETURN VALUE
NUMBER

EXAMPLES
?(+12345)
15

87 /258

[built-in functions] Core - math

*

SYNOPSIS

(* <exprl> <expr2>..))

DESCRIPTION

* returns the product the values of the expressions <expr1>, <expr2>, etc.

RETURN VALUE
NUMBER

EXAMPLES
?(*12345)
120

88/258

[built-in functions] Core - math

SYNOPSIS
(- <expr0> <exprl> <expra> ...

DESCRIPTION

- returns the value of the expression <exprO> minus the sum of the values of the
expressions <expr1>, <expr2>, etc.

When no <expr1> is given, - returns the additive inverse of the value of <expr0>.

RETURN VALUE
NUMBER

EXAMPLES
?(-10234)
1

? (- 10)
-10

89 /258

[built-in functions] Core - math

/

SYNOPSIS

(/ <expr0> <exprl> <exprz>...)

DESCRIPTION

/ returns the value of the expression <expr0> divided by the product of the values of the
expressions <expr1>, <expr2>, etc.

When no <expr1> is given, / returns the multiplicative inverse of the value of <expr0>.

RETURN VALUE
NUMBER

EXAMPLES
?(/2434)
2

?(/ 3)
0.333333

PELE3¢I))
t

90 /258

[built-in functions] Core - math

abs

SYNOPSIS

(abs <expr>)

DESCRIPTION

ABS returns the absolute value of the value of <expr>.

RETURN VALUE
NUMBER

EXAMPLES
? (abs (- 1 3))
2

917258

[built-in functions] Core - math

ceiling

SYNOPSIS

(ceiling <expr>)

DESCRIPTION

CEILING returns the smallest integer that is larger than the value of <expr>. The result
has the same sign as <expr>. The result is an integer when both parameters are rationals,
a float otherwise.

RETURN VALUE
NUMBER

EXAMPLES
? (ceiling 3.5)
4

? (ceiling -4.3)
-4

92 /258

[built-in functions] Core - math

floor

SYNOPSIS

(floor <expr>)

DESCRIPTION

FLOOR returns the largest integer smaller than the value of <expr>. The result has the
same sign as <expr>. The result is an integer when both parameters are rationals, a float
otherwise.

RETURN VALUE
NUMBER

EXAMPLES
? (floor 3.5)
3

? (floor -4.3)
-5

937258

[built-in functions] Core - math

round

SYNOPSIS

(round <expr>)

DESCRIPTION

ROUND returns the closest integer to the value of <expr>, rounding to even when the
value of <expr> is halfway between two integers. The result is an integer when both
parameters are rationals, a float otherwise.

RETURN VALUE
NUMBER

EXAMPLES
? (round 3.5)
4

? (round -4.3)
-4

? (round -4.7)
-5

94 /258

[built-in functions] Core - math

truncate

SYNOPSIS

(truncate <expr>)

DESCRIPTION

TRUNCATE returns the integer with the same sign as <expr> and such as its absolute
value is the largest integer smaller than the absolute value of <expr>. This is the same
function as floor on positive integers and ceiling on negative numbers. The result is an
integer when both parameters are rationals, a float otherwise.

RETURN VALUE
NUMBER

EXAMPLES
? (truncate 3.5)

3

? (truncate -4.3)

-4

957258

[built-in functions] Core - math

modulo

SYNOPSIS

(modulo <exprl> <expra>)

DESCRIPTION

MODULO returns the remainder of the integer division of the value of <expr1> by the
value of <expr2>. The modulo is always positive and its value lower than the absolute
value of <expr2>.

RETURN VALUE
INTEGER NUMBER

EXAMPLES
? (modulo 13 4)
1

? (modulo 13 -4)
1

? (modulo -13 4)
3

? (modulo -13 -4)
3

96 /258

[built-in functions] Core - math

quotient

SYNOPSIS
(quotient <exprl> <expr2>)

DESCRIPTION

QUOTIENT returns the quotient of the integer division of the value of <expr1> by the
value of <expr2>. The quotient is negative if and only if exactly one of <expr1> and
<expr2> is negative. The quotient g and remainder r of a and b are defined by:

a=bg+r0=<r<|b

RETURN VALUE
INTEGER NUMBER

EXAMPLES
? (quotient 13 4)
3

? (quotient 13 -4)
-3

? (quotient -13 4)
-3

? (quotient -13 -4)
3

97 /258

[built-in functions] Core - math

remainder

SYNOPSIS
(remainder <exprl> <expr2>)

DESCRIPTION

REMAINDER returns the remainder of the integer division of the value of <expr1> by the
value of <expr2>. The remainder has the same sign as the value of <sexpr1> and its
absolute value is lower than the absolute value of <sexpr2>. See the quotient function for
further details. The MODULO is the REMAINDER “adjusted” by a multiple of <expr2>
such as being positive.

RETURN VALUE
INTEGER NUMBER

EXAMPLES
? (remainder 13 4)

1

? (remainder 13 -4)

1

? (remainder -13 4)

-1

? (remainder -13 -4)
-1

98 /258

[built-in functions] Core - math / logarithms

sqrt

SYNOPSIS
(sqrt <expr>)

DESCRIPTION

SQRT returns the square root of the value of <expr>.

RETURN VALUE
NUMBER

EXAMPLES
? (sqrt 4)
2

? (sqrt 2)
1.4142135623731

99 /258

[built-in functions] Core - math / logarithms

expt

SYNOPSIS

(expt <expr x> <expr n>)

DESCRIPTION

EXPT returns the value of <expr x> raised to the power of the value of <expr n>.

RETURN VALUE
NUMBER

EXAMPLES
? (expt 3 4)
8l

100/ 258

[built-in functions] Core - math / logarithms

exp

SYNOPSIS

(exp <expr>)

DESCRIPTION

EXP returns the exponential of the value of <expr>.

RETURN VALUE
NUMBER

EXAMPLES
? (exp 1)
2.71828182845905

? (exp (log 2))
2

101 /258

[built-in functions] Core - math / logarithms

log

SYNOPSIS
(log <expr>)

DESCRIPTION

LOG returns the natural logarithm of the value of <expr>.

RETURN VALUE
NUMBER

EXAMPLES

? (log 1)
0

? (log (exp 3))
3

? (floor (/ (log 100) (log 10)))
2

? (floor (/ (log 999) (log 10)))
2

102 /258

[built-in functions] Core - math / trigonometry

P!

SYNOPSIS
pi

DESCRIPTION

Pl returns the value of the universal constant n.

RETURN VALUE
NUMBER

EXAMPLES

? pi
3.14159265358979

1037/ 258

[built-in functions] Core - math / trigonometry

degrees->radians

SYNOPSIS

(degrees->radians <expr>)

DESCRIPTION

DEGREES->RADIANS returns the value of the <expr> converted from degrees to radians.

RETURN VALUE
NUMBER

EXAMPLES
? (/ (degrees->radians 360) pi)
2

104 /258

[built-in functions] Core - math / trigonometry

radians->degrees

SYNOPSIS

(radians->degrees <expr>)

DESCRIPTION

RADIANS->DEGREES returns the value of the <expr> converted from radians to degrees.

RETURN VALUE
NUMBER

EXAMPLES
? (radians->degrees pi)
180

1057258

[built-in functions] Core - math / trigonometry

cos, sin, tan

SYNOPSIS
(sin <expr>)
(cos <expr>)

(tan <expr>)

DESCRIPTION

SIN, COS, and TAN return the sine, cosine, and tangent of the value of <expr> expressed
in radians.

RETURN VALUE
NUMBER

EXAMPLES
? (sin (/ pi 6))
0.5

? (cos (/ pi 3))
0.5

? (tan (/ pi 4))
1

106 /258

[built-in functions] Core - math / trigonometry

acos, asin, atan

SYNOPSIS

(asin <expr>)
(acos <expr>)
(atan <expr>)

(atan <expr y> <expr x>)

DESCRIPTION

ASIN, ACOS, and ATAN return the arcsine, arccosine, and arctangent of the value of
<expr>. The returned angles are expressed in radians.

The 2 parameters version of ATAN returns the angle in radians between the X axis and
the point of (x,y) adjusted such as the absolute value of the angle is lower or equal to n/
2.

RETURN VALUE
NUMBER

EXAMPLES
? (radians->degrees (asin 0.5))
30

? (radians->degrees (acos 0.5))
60

? (radians->degrees (atan 1))
45

? (radians->degrees (atan 2 1))
63.4349

107 /258

[built-in functions] Core - math / complex numbers

real-mode

SYNOPSIS

(real-mode)

DESCRIPTION

REAL-MODE turns the math calculations to real mode, the default. All computations are
made using real numbers only.

The real and complex modes are states of the interpreter, not of the application; thus
real-mode is automatically restored when the interpreter is reset or the application
started.

RETURN VALUE
NONE

EXAMPLES
? (real-mode)
? (sqrt-1)

nhan

108 /258

[built-in functions] Core - math / complex numbers

complex-mode

SYNOPSIS

(complex-mode)

DESCRIPTION

COMPLEX-MODE turns the math calculations to complex mode. All computations are
made using complex numbers; most functions are behaving as expected.

The real and complex modes are states of the interpreter, not of the application; thus
real-mode is automatically restored when the interpreter is reset or the application
started.

RETURN VALUE
NONE

EXAMPLES

? (complex-mode)
? (sqrt-1)

i

? log-1)
3.141598i

109 /258

[built-in functions] Core - math / complex numbers

->complex

SYNOPSIS
(->complex <sexprl> <sexprz>)

(->complex <sexpr>)

DESCRIPTION

(->COMPLEX <sexpr1> <sexpr2>) returns a complex number with the real part made of
the value of <sexpr1> and the imaginary part made from the value of <sexpr2>.

(->COMPLEX <sexpr>) returns a complex number with the real part made from the first
element of the list value of <sexpr> and the imaginary part made from the second
element of the list value of <sexpr>.

->COMPLEX switches the interpreter in complex mode.

RETURN VALUE
NUMBER

EXAMPLES

? (->complex 1 2)
1+2i

? (->complex '(1 2))
1+2i

110/ 258

roots

SYNOPSIS

(roots <sexpr5> <sexprd> <sexpr3> <sexpra> <sexprl> <sexpr0>)
(roots <sexpré4> <sexpr3> <sexpra> <sexprl> <sexpr(0>)

(roots <sexpr3> <sexpra> <sexprl> <sexpr0>)

(roots <sexpr2> <sexprl> <sexpr0>)

(roots <sexprl> <sexpr0>)

DESCRIPTION

ROQTS searches for an approximates of the polynomial defined its coefficients. It solves
the polynomial equations using radicals, thus accepts polynomials up to the 4th grade.

RETURN VALUE
NUMBER

EXAMPLES

1 3xM3+2xM2+x+5=0
? (real-mode)

? (roots 32 1 5)
(-1.342780)

? (complex-mode)
? (roots 32 1 5)
(-1.342780 0.338057+1.061566i 0.338057-1.0615661)

[built-in functions] Core - math / numerical analysis

solve

SYNOPSIS

(solve <f> <min> <max>)

DESCRIPTION

SOLVE searches a solution to the equation f(x) = 0 with an initial estimate between the
values of <min> and <max>. The search is made using numerical analysis and is not
guaranteed to be within the search range.

RETURN VALUE
NUMBER

EXAMPLES

; solving sqrt(x) - x = 0.2

? (solve (lambda (x) (- (sqrt x) x 0.2)) 0 5)
-0.2

; solving 5000(1 - e"(-x/20)) - 200x =0

? (define F(x) (- (* 8000 (- 1 (exp (/ (- x) 20)))) (* 200 x)))
F

? (solve F 5 6)

9.284255

112 /258

[built-in functions] Core - math / numerical analysis

integ

SYNOPSIS
(integ <f> <min> <max>)

DESCRIPTION

INTEG estimates the integral of the function f(x) within the interval defined by the values
of <min>and <max>.

RETURN VALUE
NUMBER

EXAMPLES
? (integ (lambda (x) (/ (sin x) x)) 0 2)
1.605413

? (integ (lambda (x) (/ 1 x)) 1 2)
0.693147

1137258

[built-in functions] Core - system

date

SYNOPSIS
(date)

DESCRIPTION
DATE returns the current date/time as a string with the format "YYYY-MM-DD HH:MM:SS".

RETURN VALUE
STRING

EXAMPLES
? (date)
2018-03-21 17:42:06

1147258

[built-in functions] Core - system

seconds-from-epoch

SYNOPSIS

(seconds-from-epoch)

DESCRIPTION

SECONDS-FROM-EPOCH returns the number of seconds since 01/01/1970 as an
integer. This is quite useful when random values are necessary.

RETURN VALUE
NUMBER

EXAMPLES
? (seconds-from-epoch)
1521560312

1157258

Tools.lisp

1167258

[user functions] Tools.lisp

apply

SYNOPSIS
(apply f <expr>)

DESCRIPTION

APPLY evaluates the expression (f <expr>).

RETURN VALUE
EXPR

EXAMPLES
? (apply "*'(3 4 9))
60

? (define compose (lambda (f g) (lambda (args) (f (apply g args)))))

compose

? ((compose sqrt *) '(12 75))
30

1177258

[user functions] Tools.lisp

mapcar

SYNOPSIS

(mapcar f <list>)

DESCRIPTION

MAPCAR applies the function f to all the elements of the <list> expression, and returns
the list of the results.

RETURN VALUE
EXPR

EXAMPLES
? (mapcar '(lambda (x) (+ xx)) '(1 2 3))
(246)

118 /258

[user functions] Tools.lisp

maplist

SYNOPSIS

(maplist f <list>)

DESCRIPTION

MAPLIST applies the function f to all the CDR of the <list> expression, and returns the list
of the results.

RETURN VALUE
EXPR

EXAMPLES
? (maplist 'cdr '(1 2 3))
((2 3) (3) nil)

1197258

[user functions] Tools.lisp

evcar

SYNOPSIS

(evcar <list>)

DESCRIPTION

EVCAR applies the EVAL function to all the CAR of the <list> expression, and returns the
result of the last evaluation.

It is a faster shortcut to:

(car (reverse (mapcar eval <list>)))

RETURN VALUE
EXPR

EXAMPLES
? (evcar '((print 1) (print 2) (print 3) (+ 3 4)))
1237

120/ 258

let

SYNOPSIS
(let <bindings> <action> <action>...)

DESCRIPTION

LET creates a binding context from <bindings>, then it evaluates all the <action>
expressions from left to right, and returns the value of the last one.

The <bindings> expression is a list of the form ((<name> <value>) (<name> <value> ...))
with each pair (<name> <value>) added to the binding context of the following <action>
expressions; the <value> expressions are evaluated from left to right within the binding
context of the caller.

It is a shortcut to the following expression when the (xi vi) expressions are not related in
any way:

(progn (define x1 vl) (define x2 v2).... <action> <action>...)

RETURN VALUE
EXPR

EXAMPLES

? (let ((x3) (y4) (*xV))
12

? (let ((x 2) (v 3)) et ((x 1) (z (+x¥))) (*zx)))
35

let*

SYNOPSIS

(let* <bindings> <action> <action>...)

DESCRIPTION

LET* creates a binding context from <bindings>, then it evaluates all the <action>
expressions from left to right, and returns the value of the last one.

The <bindings> expression is a list of the form ((<name> <value>) (<name> <value> ...))
with each pair (<name> <value>) added to the binding context of the following <action>
expressions; the <value> expressions are evaluated from left to right within the current
binding context, which is the key difference between LET and LET*.

It is a shortcut to:

(progn (define x1 v1) (define x2 v2).... <action> <action>...)

RETURN VALUE
EXPR

EXAMPLES

? (let* ((x3) (Y 4) (*x¥))
12

? (let ((x 2) (v 3)) (et* ((x 7) (z (+ xV))) (*zX)))
10

[user functions] Tools.lisp

append

SYNOPSIS
(append <listl> <list2>)

DESCRIPTION

APPENDS returns a list made of all elements of <list1> followed by all elements of
<list2>.

RETURN VALUE
EXPR

EXAMPLES
? (append.'(12 3) '(4 56 7))
(1234567)

1237258

[user functions] Tools.lisp

last

SYNOPSIS
(last <list>)

DESCRIPTION

LAST returns the last CDR of the list </ist>.

RETURN VALUE
LIST

EXAMPLES
? (last'(1 234 56))

(6)

124 /258

[user functions] Tools.lisp

length

SYNOPSIS
(Iength <list>)

DESCRIPTION

LENGTH returns the number of elements in <list>. It returns O if NIL or not a list.

RETURN VALUE
NUMBER

EXAMPLES
? (length '(1 2 (1 2 3) 4))
4

1257258

[user functions] Tools.lisp

list->string

SYNOPSIS
(list->string <list> <sep>)

(list->string <list>)

DESCRIPTION

LIST->STRING converts the list <list> into a string using a separator string <sep> between
the elements. When the separator is omitted, a space is assumed.

Note that LIST->STRING is not recursive in the sense that nested list are concatenated
using their print form.

RETURN VALUE
STRING

EXAMPLES
? (list->string '(1 2 3 a b (4 5)))
123ab(45)

? (list->string '(1 23 a b (4 5)) 'M)
1M2M3MaMbM (4 5))

126 /258

[user functions] Tools.lisp

make-list

SYNOPSIS

(make-list <n> <expr>)

DESCRIPTION

MAKE-LIST creates a list <n> long filled with <expr>.

RETURN VALUE
LIST

EXAMPLES
? (make-list 4 2)
2222)

? (make-list 3 ‘(1 2 3))
((123)(123)(123))

1277258

[user functions] Tools.lisp

nth

SYNOPSIS
(nth <n> <list>)

DESCRIPTION

NTH returns the <n>-th element of the list <list> where n=0 denotes the first element. I
NTH gets past the last element of the list then NIL is returned.

RETURN VALUE
EXPR

EXAMPLES
? (nth2'(1234586)
3

? (nth 2 (1 2) (3 4) (5 6) (7 8)))
(56)

128 /258

[user functions] Tools.lisp

nthcdr

SYNOPSIS

(nthedr <n> <list>)

DESCRIPTION

NTHCDR returns the <n>-th CDR element of the list <list> where n=0 denotes the whole
list. If NTHCDR gets past the last element of the list then NIL is returned.

RETURN VALUE
EXPR

EXAMPLES
? (nthedr 2'(1 23 4 5 6)
(3456)

? (nthedr 2 (1 2) (3 4) (5 6) (7 8)))
((56)(T8))

129 /258

[user functions] Tools.lisp

reverse

SYNOPSIS

(reverse <list>)

DESCRIPTION

REVERSE returns a list with all the elements of <list> in the opposite order.

RETURN VALUE
LIST

EXAMPLES
? (reverse '(1 2 3))
@21

130/ 258

[user functions] Tools.lisp

subst

SYNOPSIS

(subst <new> <old> <expr>)

DESCRIPTION

SUBST substitutes all occurrences of <old> with <new> in the expression <expr>. This
function is fundamental to the CLOSURE function.

RETURN VALUE
EXPR

EXAMPLES
? (substl ‘x‘(xy2)
(1y2)

? (subst 42 ‘a ‘(lambda (xy) (+ xya))
(lambda (xy) (+ xy 42))

1317258

[user functions] Tools.lisp

subst*

SYNOPSIS

(subst* <patterns> <expr>)

DESCRIPTION

SUBST* executes SUBST with a set of patterns <patterns> of the form (<new1> <old1>
<new2> <old2>...), thus allowing to execute substitutions in one single call.

RETURN VALUE
EXPR

EXAMPLES
? (subst* (1 x2y32) ‘(xy 2)
(123)

132/258

[user functions] Tools.lisp

unless

SYNOPSIS

(unless <test> <action> <action>...)

DESCRIPTION

UNLESS evaluates the <test> expression ; if it is not NIL it returns NIL; otherwise all the
<action> expressions are evaluated from left to right and the value of the last one is
returned.

It is a shortcut to:

(if test '() <action> <action>...)

RETURN VALUE
EXPR or NIL

EXAMPLES
? (unless (eq 'a 'b) 'this 'is 'a 'set 'of 'atoms)

atoms

1337258

[user functions] Tools.lisp

when

SYNOPSIS

(when <test> <action> <action>...)

DESCRIPTION

WHEN evaluates the <test> expression ; if it is NIL then it returns NIL; otherwise all the
<action> expressions are evaluated from left to right and the value of the last one is
returned.

It is a shortcut to:

(if (not test) '() <action> <action>...)

RETURN VALUE
EXPR or NIL

EXAMPLES
? (when (eq 'a 'b) 'this 'is 'a 'set 'of 'atoms)

nil

134/ 258

[user functions] Tools.lisp

repeat

SYNOPSIS
(repeat <counter> <action> <action>...)

DESCRIPTION

REPEAT repeatedly evaluates all the <action> expressions from left to right until the
counter variable <counter> goes to 0. The counter is decremented at each iteration and
the repeat loop is not executed if the counter is equal or lower than 0 upon the initial call.

This repeat loop is effective when some of the actions have some side effects on the
environment such as producing some variation on each loop.

It is a shortcut to:

(repeat-eval <counter> (list ‘progn <action> <action>...))

RETURN VALUE
NIL

EXAMPLES
? (define x 1)
? (repeat 5 (println “x=" x) (set! x (+ x 1)))

M M KM M M
1
a » W D -~

1357258

[user functions] Tools.lisp

repeat-eval

SYNOPSIS

(repeat-eval <counter> <list>)

DESCRIPTION

REPEAT-EVAL repeatedly applies the EVAL function to the </ist> until the counter variable
<counter> goes to 0. The counter is decremented at each iteration and the repeat loop is
not executed if the counter is equal or lower than 0 upon the initial call.

This repeat loop is effective when some of the actions have some side effects on the
environment such as producing some variation on each loop."

RETURN VALUE
NIL

EXAMPLES
? (define x 1)
? (repeat-eval 5 ‘(progn (println “x=" x) (set! x (+ x 2))))

M M XM M M
Il
© N 00 W -~

1367258

[user functions] Tools.lisp

and

SYNOPSIS

(and <expr>...)

DESCRIPTION

AND returns NIL if the value of one <expr> is NIL, T otherwise. The expressions are
evaluated from left to right and the function returns as soon as one evaluates to NIL : thus
AND evaluates only the <expr> that are required to determine its return value.

RETURN VALUE
T or NIL

EXAMPLES
? (and (eq 'a'a) (eq 'b 'b))
t

? (and (eq 'a'a) (eq 'b 'a))

nil

? (and (progn (println "a") nil) (progn (println "b") 't))
a

nil

? (and (progn (println "a") 'a) (progn (println "b") 't))

a

?(and)

1377258

[user functions] Tools.lisp

not

SYNOPSIS

(not <expr>)

DESCRIPTION

NOT returns T if the value of the expression <expr> is NIL, NIL otherwise.

RETURN VALUE
T or NIL

EXAMPLES
? (not (eq 'a 'a))

nil

? (not (eq 'a 'b))
t

? (define (not x) (ifx'() 't))

not

1387258

[user functions] Tools.lisp

or

SYNOPSIS

(or <expr>...)

DESCRIPTION

OR returns T if the value of one <expr> is T, NIL otherwise. The expressions are evaluated
from left to right and the function returns as soon as one evaluates to T : thus OR
evaluates only the <expr> that are required to determine its return value.

RETURN VALUE
T or NIL

EXAMPLES
? (or (eq'a'a) (eq 'b 'b))
t

? (or (eq'a'b) (eq'b 'a))

nil

? (or (progn (println "a") nil) (progn (println "b") 't))
a
b
t

? (or (progn (println "a") 'a) (progn (println "b") 't))
a

t

? (or)

nil

139 /258

[user functions] Tools.lisp

member?

SYNOPSIS
(member? <expr> <list>)

DESCRIPTION

MEMBER? returns the part of the list </ist> starting with the expression <expr>, NIL if not
part is matching. The tests are made against the CAR of the list, not sublists.

RETURN VALUE
EXPR

EXAMPLES
? (member? 3 ‘(1 2 3 4 5))
(34 5)

? (member? ‘(4 2) ‘(12 (42) 6 7))
((42)67)

? (member? (1 2) ‘(1 2 3 4 5))

nil

140/ 258

[user functions] Tools.lisp

comment

SYNOPSIS

(comment <expr>...)

DESCRIPTION

COMMENT returns its unevaluated argument expressions <expr>. This function is usually
used to comment out chunks of valid expressions.

RETURN VALUE
EXPR

EXAMPLES
? (comment (* 6 7) (+ 4 2))
(*67) (+42)

141/ 258

Math.lisp

The Math.lisp library file contains various general-purpose mathematical functions not
otherwise part of the core functions. This file is automatically loaded when My Lisp
interpreter is started or reset.

142 /258

0?

SYNOPSIS

(0? <n>)

DESCRIPTION

0? returns T if <n> is 0, NIL otherwise. This function is equivalent to (= <n> 0) and is
usually used for the sake of code clarity.

Note that starting with version 1.89, this function is considered obsolete and kept only for
compatibility reasons.

RETURN VALUE
T or NIL

EXAMPLES
? (0? 3)

nil

? (0? (- 33))
t

[user functions] Math.lisp

1?

SYNOPSIS
(1? <n>)

DESCRIPTION

1? returns T if <n> is 1, NIL otherwise. This function is equivalent to (= <n> 1) and is
usually used for the sake of code clarity.

Note that starting with version 1.89, this function is considered obsolete and kept only for
compatibility reasons.

RETURN VALUE
T or NIL

EXAMPLES
? (12 8)

nil

? (17 (- 32))
t

144 /258

[user functions] Math.lisp

zero?

SYNOPSIS

(zero? <n>)

DESCRIPTION

ZERO? returns T if <n> is 0, NIL otherwise. This function is equivalent to (= <n> 0) and is
usually used for the sake of code clarity.

Note that starting with version 1.89, this function is considered obsolete and kept only for
compatibility reasons.

RETURN VALUE
T or NIL

EXAMPLES
? (zero? 3)

nil

? (zero? (- 3 3))
t

145/ 258

[user functions] Math.lisp

even?

SYNOPSIS

(even? <n>)

DESCRIPTION

EVEN? returns T if <n> is an even number, NIL otherwise.

RETURN VALUE
T or NIL

EXAMPLES
? (even? 3)

nil

? (even? 4)

t

146/ 258

[user functions] Math.lisp

odd?

SYNOPSIS
(odd? <n>)

DESCRIPTION

ODD? returns T if <n> is an odd number, NIL otherwise.

RETURN VALUE
T or NIL

EXAMPLES
? (odd? 3)
t

? (odd? 4)

nil

147 /258

[user functions] Math.lisp

1+

SYNOPSIS
(1+ <n>)

DESCRIPTION

1+ returns the value of <n> incremented by 1. This function is equivalent to (+ <n> 1)
and is usually used for the sake of code clarity.

Note that starting with version 1.89, this function is considered obsolete and kept only for
compatibility reasons.

RETURN VALUE
NUMBER

EXAMPLES
? (1+ 3)
4

148 /258

[user functions] Math.lisp

1-

SYNOPSIS
(1- <n>)

DESCRIPTION

1- returns the value of <n> decremented by 1. This function is equivalent to (- <n> 1) and
is usually used for the sake of code clarity.

Note that starting with version 1.89, this function is considered obsolete and kept only for
compatibility reasons.

RETURN VALUE
NUMBER

EXAMPLES
? (1- 3)
2

149 /258

[user functions] Math.lisp

fact

SYNOPSIS
(fact <n>)

(! <n>)

DESCRIPTION

FACT computes the factorial of the integer <n>.

RETURN VALUE
NUMBER

EXAMPLES
? (fact 0)
1

? (fact 5)
120

? (1 6)
720

150/ 258

[user functions] Math.lisp

fib

SYNOPSIS
(fib <n>)

DESCRIPTION

FIB computes the <n>-th Fibonacci number.

RETURN VALUE
NUMBER

EXAMPLES
? (fib 0)
0

? (fib 1)
1

? (fib 2)
1

? (fib 8)
21

151/258

[user functions] Math.lisp

egcd

SYNOPSIS

(egcd <m> <n>)

DESCRIPTION

EGCD computes the extended greatest common divisor of <m> and <n>. The result is a
list (st d)such as d =gcd(m,n)and s.m + t.n = d.

RETURN VALUE
NUMBER

EXAMPLES
? (egcd 12 5)
(-251)

? (egcd 12 -5)
(-2-51)

? (egcd 12 54)
(-416)

152/ 258

[user functions] Math.lisp

gcd

SYNOPSIS
(gcd<ﬂn>~<n>)

DESCRIPTION

GCD computes the greatest common divisor of <m> and <n>. The result is always
positive.

RETURN VALUE
NUMBER

EXAMPLES
? (gcd 12 5)
1

? (ged 18 48)
6

? (ged 18 -48)
6

1537258

[user functions] Math.lisp

gcd_abs

SYNOPSIS

(gcd_abs <m> <n>)

DESCRIPTION

GCD_ABS computes the greatest common divisor of <m> and <n> that are assumed
positive integers. The function does not check the validity of its parameters, thus one
must ensure they are valid.

RETURN VALUE
NUMBER

EXAMPLES
? (gcd_abs 12 5)
1

? (gcd_abs 18 48)
6

154/ 258

[user functions] Math.lisp

Ilcm

SYNOPSIS

(Icm <m> <n>)

DESCRIPTION

LCM computes the least common multiple of the expressions <m> and <n>, two
integers. The computed LCD is always positive.

RETURN VALUE
NUMBER

EXAMPLES
? (lcm 12 B)
60

? (lcm 18 48)
144

1557258

[user functions] Math.lisp

prime?

SYNOPSIS

(prime? <n>)

DESCRIPTION

PRIME? returns T if the integer <n> is a prime number, NIL otherwise.

Note that the evaluation of prime? is delegated to the prime-numbers::prime?
function of the primes.lisp file which is automatically loaded if required.

RETURN VALUE
T or NIL

EXAMPLES
? (prime? 19)
t

? (prime? 827)
t

? (prime? 201)

nil

156/ 258

Rationals.lisp

The Rationals.lisp library file contains various functions for manipulating and representing

rational numbers. This file is automatically loaded when My Lisp interpreter is started or
reset.

For alternate representation of rational numbers, see the example files Egyptian fractions
and Continued fractions.

[user functions] Rationals.lisp

rational->decimal-string

SYNOPSIS
(rational->decimal-string <fract>)

(rational->decimal-string <fract> <max-digits>)

DESCRIPTION

RATIONAL->DECIMAL-STRING returns the decimal expansion of the rational number
<fract>. The optional <max-digits> number (default to 50) indicates how many digits to
use in the expansion and whether to search for the period: when positive, the period of
the rational is searched into the first <max-digits> digits of the expansion and printed
using the {period digits}... format; when negative, all the digits of the decimal expansion
up to the absolute value of <max-digits> are printed.

Note that the function returns a symbol and not a string; this is a choice to ease the
reading of the output on the console.

RETURN VALUE
SYMBOL

EXAMPLES
? (rational->decimal-string 1/4)
0.25

? (rational->decimal-string 1/3)
0.{3}...

? (rational->decimal-string 303/106)
2.8{5849056603773}...

? (rational->decimal-string 303/106 -20)
2.858490566037735849085...

158/ 258

[user functions] Rationals.lisp

rational>decimal-list

SYNOPSIS
(rational->decimal-list <fract>)

(rational->decimal-list <fract> <max-digits>)

DESCRIPTION

RATIONAL->DECIMAL-LIST behaves as per RATIONAL->DECIMAL-STRING except that it
returns the result as a list of the symbols making up the decimal representation. Actually,
the RATIONAL->DECIMAL-STRING function applies the LIST->STRING function to the
result of this function.

Warning that the default maximum number of digits to search the period is limited to 10
whilst it is 50 for the string representation.

RETURN VALUE
LIST

EXAMPLES
? (Rational->decimal-list 303/106 20)
(2.8{5849056603773}...)

159 /258

Modulus.lisp

The Modulus.lisp library file contains various functions related to modular arithmetic
operations in modulus set Z/mZ. This file is automatically loaded when My Lisp
interpreter is started or reset.

[user functions] Modulus.lisp

modulus::add

SYNOPSIS

(modulus::add <m> <a>)

DESCRIPTION

MODULUS::ADD adds <a> and modulo <m>, where <m>, <a>, and are
integers.

RETURN VALUE
NUMBER

EXAMPLES
? (modulus::add 5 4 3)
2

? (modulus::add 7 -5 23)
4

1617258

[user functions] Modulus.lisp

modulus::sub

SYNOPSIS

(modulus::sub <m> <a>)

DESCRIPTION

MODULUS::SUB substracts from <a> modulo <m>, where <m>, <a>, and are
integers.

RETURN VALUE
NUMBER

EXAMPLES
? (modulus::sub 5 4 7)
2

? (modulus::sub 7 42 3)
4

? (modulus::sub 3 1 2)
2

162 /258

[user functions] Modulus.lisp

modulus::mul

SYNOPSIS

(modulus::mul <m> <a>)

DESCRIPTION

MODULUS::MUL multiplies <a> and modulo <m>, where <m>, <a>, and are
integers.

RETURN VALUE
NUMBER

EXAMPLES
? (modulus::mul 5 4 3)
2

? (modulus::mul 5 2 -3)
4

1637258

[user functions] Modulus.lisp

modulus::div

SYNOPSIS
(modulus::div <m> <a>)

DESCRIPTION

MODULUS::DIV divides by <a> modulo <m>, where <m>, <a>, and are
integers. The division is valid if and only if has an inverse modulo <m>.

RETURN VALUE
NUMBER

EXAMPLES
? (modulus::div 5 4 3)
3

? (modulus::div 6 4 3)

nan

164 /258

[user functions] Modulus.lisp

modulus::expt

SYNOPSIS

(modulus::expt <m> <a>)

DESCRIPTION

MODULUS::EXPT raises <a> to the power of modulo <m>, where <m>, <a>, and
 are integers. When is negative, the function is valid if and only if <a> has an
inverse modulo <m>.

RETURN VALUE
NUMBER

EXAMPLES
? (modulus::expt 5 2 3)
3

? (modulus::expt 5 2 -3)
2

? (modulus::expt 6 2 -3)

nhan

1657258

[user functions] Modulus.lisp

modulus::inverse

SYNOPSIS

(modulus::inverse <m> <a>)

DESCRIPTION

MODULUS::INVERSE computes the inverse of <a> modulo <m>, where <m> and <a>
are integers. An inverse exists if and only if <m> is coprime with <a>.

RETURN VALUE
NUMBER

EXAMPLES
? (modulus::inverse 7 3)
5

? (modulus::inverse 28 15)
15

? (modulus::inverse 28 7)

nan

166/ 258

Primes.lisp

The Primes.lisp library file contains various functions related to prime numbers and
number theory. This file is automatically loaded when the prime? function is evaluated.

[user functions] Primes.lisp

prime-numbers::known-primes

SYNOPSIS

prime-numbers::known-primes

DESCRIPTION

PRIME-NUMBERS::KNOWN-PRIMES contains the list of all the known prime numbers.
This list grows over time as new prime numbers are discovered. This list is stored in the
data bindings context and thus maintained across sessions ; it is however reset with all
primes lower than 9999 when the file primes.lisp is loaded or reloaded.

RETURN VALUE
N/A

EXAMPLES
? (load “#primes”)

primes

? prime-numbers::known-primes
(2357....9973)

168 /258

[user functions] Primes.lisp

prime-numbers::prime-to-known?

SYNOPSIS

(prime-numbers::prime-to-known? <n>)

DESCRIPTION

PRIME-NUMBERS::PRIME-TO-KNOWN? determines whether the number <n> is relatively
prime with all known prime numbers of prime-numbers::known-primes. The response of
the function will depend on how many primes are currently known; however when nil is
returned, the result will always be nil unless the list of the known prime is reset.

Note that a number that is not relatively prime is not prime.

RETURN VALUE
NUMBER

EXAMPLES
? (prime-numbers::prime-to-known? 997)

t

? (prime-numbers::prime-to-known? 5389)

nil

169 /258

[user functions] Primes.lisp

prime-numbers::prime?

SYNOPSIS

(prime-numbers::prime? <n>)

DESCRIPTION

PRIME-NUMBERS::PRIME? determines whether the number <n> is a prime number. The
set of the known primes will grow if it is required to determine the result.

RETURN VALUE
T or NIL

EXAMPLES
? (prime-numbers::prime? 997)

t

? (prime-numbers::prime? 5389)

nil

? (prime-numbers::prime? 10001)

nil

? (prime-numbers::prime? 12041)
t

170/ 258

[user functions] Primes.lisp

prime-numbers::nth

SYNOPSIS

(prime-numbers::nth <n>)

DESCRIPTION

PRIME-NUMBERS::NTH returns the <n>-th prime number, counting from 1. The list of
known primes is extended if required such as it contains at least <n> elements after the
function returns.

RETURN VALUE
NUMBER

EXAMPLES
? (prime-numbers::nth 1)
2

? (prime-numbers::nth 2)
3

? (prime-numbers::nth 100)
541

? (prime-numbers::nth 1442)
12041

1717258

[user functions] Primes.lisp

prime-numbers::primorial

SYNOPSIS

(prime-numbers::primorial <n>)

DESCRIPTION

PRIME-NUMBERS::PRIMORIAL returns the product of the prime numbers lower than or
equal to the number <n>. This function is known as the primorial function and sometime
denoted #. See https://en.wikipedia.org/wiki/Primorial for details.

RETURN VALUE
NUMBER

EXAMPLES
? (prime-numbers::primorial 5)
30

? (prime-numbers::primorial 100)
2305567963945518424753102147331756070

1727258

https://en.wikipedia.org/wiki/Primorial

[user functions] Primes.lisp

prime-numbers::product

SYNOPSIS

(prime-numbers::product <n>)

DESCRIPTION

PRIME-NUMBERS::PRODUCT returns the product of the first <n>-th prime numbers. This
product is a practical number.

RETURN VALUE
NUMBER

EXAMPLES
? (prime-numbers::product 5)
2310

? (prime-numbers::product 20)
557940830126698960967415390

1737258

[user functions] Primes.lisp

prime-numbers::factors

SYNOPSIS

(prime-numbers::factors <n>)

DESCRIPTION

PRIME-NUMBERS::FACTORS returns a list with all the prime numbers that are necessary
to factorize the number <n>. A factor is repeated as many time as necessary when its
power is a factor. The list is always sorted from the lowest factor to the highest.

RETURN VALUE
LIST

EXAMPLES
? (prime-number::factors 12)
(223)

? (prime-number::factors 41)
(41)

? (prime-numbers::factors 34866)
(23313 149)

? (prime-number::factors 42)
(237)

? (prime-number::factors 30031)
(59 509)

1747258

[user functions] Primes.lisp

prime-numbers::factors*

SYNOPSIS

(prime-numbers::factors* <n>)

DESCRIPTION

PRIME-NUMBERS::FACTORS* returns a list with all the prime numbers that are necessary
to factorize the number <n>. The factors are represented by lists (p e) where p is the
factor and e its associated exponentiation. The list is always sorted from the lowest factor
to the highest.

RETURN VALUE
LIST

EXAMPLES

? (prime-number::factors* 12)

((22) 31))

? (prime-number::factors* 41)

((41 1))

? (prime-numbers::factors* 34866)
((21)(B2)(131) (149 1))

? (prime-number::factors* 42)

(1)@ ()

? (prime-number::factors* 30031)
((59 1) (809 1))

1757258

[user functions] Primes.lisp

prime-numbers::divisors

SYNOPSIS

(prime-numbers::divisors <n>)

DESCRIPTION

PRIME-NUMBERS::DIVISORS returns the list of all the divisors of the number <n>. This list
is always sorted from the lowest (1) to the highest (<n>).

RETURN VALUE
LIST

EXAMPLES
? (prime-numbers::divisors 12)
(1234612)

? (prime-numbers::divisors 41)
(141)

? (prime-numbers::divisors 42)
(12367142142

1767258

[user functions] Primes.lisp

prime-numbers::practical?

SYNOPSIS

(prime-numbers::practical? <n>)

DESCRIPTION

PRIME-NUMBERS::PRACTICAL? determines whether the number <n> is a pratical
number. See https://fr.wikipedia.org/wiki/Nombre_pratique for details on practical
numbers.

RETURN VALUE
T OR NIL

EXAMPLES
? (prime-numbers::practical? 12)
t

? (prime-numbers::practical? 42)

nil

? (prime-numbers::practical? 44)

nil

1777258

https://fr.wikipedia.org/wiki/Nombre_pratique

[user functions] Primes.lisp

prime-numbers::find-sum-from-divisors

SYNOPSIS

(prime-numbers::find-sum-from-divisors <n> <Nk>)

DESCRIPTION

PRIME-NUMBERS::FIND-SUM-FROM-DIVISORS determines a set of distinct divisors of the
<Nk> such as their sum is <n>. The function does not assume that <Nk> is a pratical
number, and when no sum can be found, nil is returned. The divisors are always sorted
from the lowest to the highest.

RETURN VALUE
LIST

EXAMPLES
? (prime-numbers::find-sum-from-divisors 7 12)
(16)

? (prime-numbers::find-sum-from-divisors 41 42)
(6 14 21)

? (prime-numbers::find-sum-from-divisors 41 44)

nil

178 /258

[user functions] Primes.lisp

prime-numbers::find-sum-from-divisors*

SYNOPSIS

(prime-numbers::find-sum-from-divisors* <n> <Nk>)

DESCRIPTION

PRIME-NUMBERS::FIND-SUM-FROM-DIVISORS* determines all sets of distinct divisors of
the <Nk> such as their sum is <n>. The function does not assume that <Nk> is a pratical
number, and when no sum can be found, nil is returned. The divisors are always sorted
from the lowest to the highest.

RETURN VALUE
LIST

EXAMPLES
? (prime-numbers::find-sum-from-divisors* 7 12)
((16)(124)(34)

? (prime-numbers::find-sum-from-divisors* 41 42)
((1231421)(61421))

? (prime-numbers::find-sum-from-divisors* 41 44)

nil

1797258

[user functions] Primes.lisp

prime-numbers::find-sum-from-list

SYNOPSIS

(prime-numbers::find-sum-from-list <n> <L>)

DESCRIPTION

PRIME-NUMBERS::FIND-SUM-FROM-LIST determines a set of distinct elements of the list
<L> such as their sum is <n>. When no sum can be found, nil is returned. The divisors are
always sorted from the lowest to the highest.

RETURN VALUE
LIST

EXAMPLES
? (prime-numbers::find-sum-from-list 7 ‘(1 2 3 4 5 6))
(16)

180/ 258

[user functions] Primes.lisp

prime-numbers::find-sum-from-list*

SYNOPSIS

(prime-numbers::find-sum-from-list* <n> <L>)

DESCRIPTION

PRIME-NUMBERS::FIND-SUM-FROM-LIST* determines all sets of distinct elements of the
list <L> such as their sum is <n>. When no sum can be found, nil is returned. The divisors
are always sorted from the lowest to the highest.

RETURN VALUE
LIST

EXAMPLES
? (prime-numbers::find-sum-from-list* 7 ‘(1 2 3 4 5 6))
((16)(28)(124)(34)

1817258

Continued fractions.lisp

The Continued fractions file contains various functions for the representation of rational
numbers as continued fractions.

[user functions] Continued fractions.lisp

rational->continued-fraction

SYNOPSIS

(rational->continued-fraction <fract>)

DESCRIPTION

RATIONAL->CONTINUED-FRACTION returns the list of the numbers making up the
continued fraction of the rational <fract>. The first number of the list is the integer part of
the fraction. When the fraction is not 1, then the last number of the listis not 1.

RETURN VALUE
LIST

EXAMPLES
? (rational->continued-fraction 12/5)
(222)

1837258

[user functions] Continued fractions.lisp

rational<-continued-fraction

SYNOPSIS

(rational<-continued-fraction <L>)

DESCRIPTION

RATIONAL->CONTINUED-FRACTION creates a rational from a list of integers making up
the continued fraction development of the rational.

This is the inverse of the rational->continued-fraction function.

RETURN VALUE
NUMBER

EXAMPLES
? (rational<-continued-fraction ‘(2 2 2))
12/5

? (rational<-continued-fraction '(2 3 1 4))
43/19

? (rational<-continued-fraction '(1 2 2 2))
17/12

? (rational<-continued-fraction'(122 1 1))
17/12

184 /258

[user functions] Continued fractions.lisp

quadratic->continued-fraction

SYNOPSIS
(quadratic->continued-fraction <n> <a> <p>)

(quadratic->continued-fraction <n>)

DESCRIPTION

QUADRATIC->CONTINUED-FRACTION returns a list with the first <p> numbers making
up the continued fraction of a quadratic number a.{/n + b where <n> is an integer and
<a> and rationals.

If <n> is not a perfect square then the list is limited to the first <p> elements; otherwise
the full continued fraction development of the rational is returned.

The second form of the function is equivalent to (quadratic->continued-fraction n 1 0 20).

RETURN VALUE
LIST

EXAMPLES
? (quadratic->continued-fraction 2)
(122222222222222222222)

? (quadratic->continued-fraction 3)
(112121212121212121212)

? (quadratic->continued-fraction 5 1/2 1/2 10)
(11111111111)

1857258

Egyptian fractions.lisp

The Egyptian fractions.lisp library file contains functions and algorithms around the
egyptian fraction representation of rational numbers.

[user functions] Egyptian fractions.lisp

rational->egyptian-fraction

SYNOPSIS
(rational->egyptian-fraction <fract> <algorithm>)

(rational->egyptian-fraction <fract>)

DESCRIPTION

RATIONAL->EGYPTIAN-FRACTION returns a list of integers making up the egyptian
fraction representation of the fraction <fract>. The first term of the list is the integer part
of the fraction and the rest the inverses of decomposition; thus (1 2) is the number 1+,
thatis 1.5.

The optional <algorithm> is either the name of the decomposition method or the
decomposition method itself; when the method is given, its invocation is (algorithm f)
where f is a rational number strictly lower than 1.

RETURN VALUE
LIST

EXAMPLES
? (rational->egyptian-fraction 3/2)
(12)

? (rational->egyptian-fraction 4/17)
(0 5 29 1233 3039345)

? (rational->egyptian-fraction 4/17 ‘exrdos)
(0617 102)

187 /258

[user functions] Egyptian fractions.lisp

rational->egyptian-fraction::fibonacci

SYNOPSIS
(rational->egyptian-fraction::fibonacci <fract>)

DESCRIPTION

RATIONAL->EGYPTIAN-FRACTION::FIBONACCI uses the Fibonacci (aka, Sylvester or
greedy) algorithm to find the Egyptian fraction terms of a fraction lower than 1.

This function is called when the algorithm for the RATIONAL->EGYPTIAN-FRACTION s
not defined, Fibonacci, Sylvester, or Greedy.

RETURN VALUE
LIST

EXAMPLES
? (rational->egyptian-fraction::fibonacci 3/7)
(8311 231)

? (rational->egyptian-fraction 3/7 ‘fibonacci)
(0311 231)

188/ 258

[user functions] Egyptian fractions.lisp

rational->egyptian-fraction::golomb

SYNOPSIS

(rational->egyptian-fraction::golomb <fract>)

DESCRIPTION

RATIONAL->EGYPTIAN-FRACTION::GOLOMB uses the Golomb algorithm to find the
Egyptian fraction terms of a fraction lower than 1.

This function is called when the algorithm for the RATIONAL->EGYPTIAN-FRACTION s
Golomb.

RETURN VALUE
LIST

EXAMPLES
? (rational->egyptian-fraction::golomb 3/7)
(83 15 35)

? (rational->egyptian-fraction 3/7 ‘golomb)
(0315 35)

189 /258

[user functions] Egyptian fractions.lisp

rational->egyptian-fraction::splitting

SYNOPSIS

(rational->egyptian-fraction::splitting <fract>)

DESCRIPTION

RATIONAL->EGYPTIAN-FRACTION::SPLITTING uses the Splitting algorithm to find the
Egyptian fraction terms of a fraction lower than 1.

This function is called when the algorithm for the RATIONAL->EGYPTIAN-FRACTION s
Splitting.

Note that the algorithm may expand to a very large number of terms. The algorithm
generates an error when this number reaches a threshold (100 by default) stored in the
variable rational->egyptian-fractions::splitting-max-terms.

RETURN VALUE
LIST

EXAMPLES
? (rational->egyptian-fraction::splitting 3/7)
(78956 57723192)

? (rational->egyptian-fraction 3/7 ‘splitting)
(07895657 1723192)

190/ 258

[user functions] Egyptian fractions.lisp

rational->egyptian-fraction::binary

SYNOPSIS

(rational->egyptian-fraction::binary <fract>)

DESCRIPTION

RATIONAL->EGYPTIAN-FRACTION::BINARY uses the Binary algorithm to find the
Egyptian fraction terms of a fraction lower than 1. This is mainly the practical algorithm
limited to practical numbers that are a power of 2.

This function is called when the algorithm for the RATIONAL->EGYPTIAN-FRACTION is
Binary.

RETURN VALUE
LIST

EXAMPLES
? (rational->egyptian-fraction::binary 3/7)
(4 8 28 56)

? (rational->egyptian-fraction 3/7 ‘binary)
(0 4 8 28 56)

? (rational->egyptian-fraction::binary 5/21)
(8163284 168 672)

? (rational->egyptian-fraction 5/21 ‘binary)
(0816 32 84 168 672)

1917258

[user functions] Egyptian fractions.lisp

rational->egyptian-fraction::primorial

SYNOPSIS

(rational->egyptian-fraction::primorial <fract>)

DESCRIPTION

RATIONAL->EGYPTIAN-FRACTION::PRIMORIAL uses the practical numbers algorithm
limited to primorials to find the Egyptian fraction terms of a fraction lower than 1. This
would be equivalent to the Bleicher/Erdds algorithm if not for the adjustment of the rest
in the modulo/quotient computation.

This function is called when the algorithm for the RATIONAL->EGYPTIAN-FRACTION is
Primorial.

RETURN VALUE
LIST

EXAMPLES
? (rational->egyptian-fraction::primorial 3/7)
(815 35)

? (rational->egyptian-fraction 3/7 ‘primorial)
(0315 35)

192 /258

[user functions] Egyptian fractions.lisp

rational->egyptian-fraction::erdos

SYNOPSIS

(rational->egyptian-fraction::erdos <fract>)

DESCRIPTION

RATIONAL->EGYPTIAN-FRACTION::ERDOS uses the Bleicher/Erdos algorithm to find the
Egyptian fraction terms of a fraction lower than 1.

This function is called when the algorithm for the RATIONAL->EGYPTIAN-FRACTION s
one of Bleicher-Erdos, Bleicher-Erdos, Bleicher, Erdos, or Erdds.

RETURN VALUE
LIST

EXAMPLES
? (rational->egyptian-fraction::erdos 3/7)
(3 14 42)

? (rational->egyptian-fraction 3/7 ‘erdos)
(031442)

? (rational->egyptian-fraction::erdos 5/121)
(0 30 242 605 726 1210)

? (rational->egyptian-fraction 5/121 ‘erdos)
(0 30 242 605 726 1210)

1937258

[user functions] Egyptian fractions.lisp

rational->egyptian-fraction::practical

SYNOPSIS

(rational->egyptian-fraction:practical <fract> <findNk>)

DESCRIPTION

RATIONAL->EGYPTIAN-FRACTION::PRACTICAL uses the base algorithm with practical
numbers to find the Egyptian fraction terms of a fraction lower than 1. The <findNk>
parameter is a function to compute the sequence of practical numbers to use. See the
binary and primorial functions for examples.

RETURN VALUE
LIST

EXAMPLES
(define (find-2n p)
(define (find n p)
@(>=np)n
(find (* 2 n) p))

(find 2 p)

? (rational->egyptian-fraction::practical 3/7 find-2n)
(4 8 28 56)

194 /258

[user functions] Egyptian fractions.lisp

rational<-egyptian-fraction

SYNOPSIS

(rational<-egyptian-fraction <L>)

DESCRIPTION

RATIONAL<-EGYPTIAN-FRACTION computes the rational number defined by its terms in
the list <L>. The first term of the list is the integer part of the rational and the rest is made
of the inverses of the egyptian fraction representation of its decimal part. This function is
the inverse of the RATIONAL->EGYPTIAN-FRACTION; the other way around is not true as
the egyptian fraction decomposition is never unique.

RETURN VALUE
NUMBER

EXAMPLES
? (rational<-egyptian-fraction ‘(0 2 3))
5/6

? (define x <whatever rational>)

X

? (= x (rational<-egyptian-fraction (rational->egyptian-fraction x)))
t

1957258

Le_Lisp.lisp

The Le_Lisp.lisp library file contains various functions borrowed from Le Lisp
implementation of Lisp. Its most important functions are gensym and closure that allow
adding lexical binding (aka closure) to lambda expressions. These 2 functions are so
much useful that they are actually available in standalone files, gensym.lisp and
closure.lisp and loaded automatically when My Lisp interpreter is started or reset.

196 /258

[user functions] Le_Lisp

closure

SYNOPSIS

(closure <symbols> <expr>)

DESCRIPTION

CLOSURE returns the expression <expr> with various symbols replaced with newly
allocated symbols, thus allowing lexical bindings for all symbols. The <symbols>
argument is a list of symbols that will be substituted by gensym’d symbols within <expr>.

RETURN VALUE
SYMBOL

EXAMPLES
? (define (make-adder init)
(let ((counter init))
(closure ‘(counter)
(lambda ((val 0))
(progn

(if val (set! counter (+ counter val)))
counter)))))

make-adder

? (definer counter (make-adder 3))

counter

? (counter 4)
7

? (counter)
1

1977258

[user functions] Le_Lisp

Natural number generator:

(define nextint

(et (n 0))
(closure '(n)
(lambda ()
(progn
(set!n (+n 1))
1n)))))

? (nextint) (nextint) (nextint)

Fibonacci numbers generator:

(define nextfib
(et ((x0) (¥ 1))
(closure '(xy)
(lambda ()
(progn
(define res y)
(set!y (+ xv))
(set! x res)
res)))))

? (nextfib) (nextfib) (nextfib) (nextfib) (nextfib) (nextfib)

0 01 W DD =

198 /258

Composition of functions:
(define (compose f g)
(closure ‘(f g)

(lambda () (f (9 ¥)))))

We can now use the compose function to create the function e/x:

? (define ei (compose exp /))

ei

? (ei 10)
1.1052

? (ei 1)
2.7183

Currying of functions:
(define (curry f . args)
(closure ‘(f args)

(lambda (. more-args)

(apply f (append args more-args)))))

? (define add4 (curry + 4))
add4

? (add4 B)
9

? (define (muldiffab c) (* (+ac) (-bc)))
muldiff

? (define muldiff4 5 (curry muldiff 4 5))
muldiff4 5

? (muldiff4 5 1)
20

Flip-flop:
(define flip-flop

(et (x 1))
(closure ‘(x)
(lambda()
(progn
(set! x (-1 x))
x)))))

? (flip-flop)
0

? (flip-flop)
1

Lexically scoped let:

The following clet function is the same as the standard let one except that it is lexically
scoped, thus the value of its variables do not depend the environment once after the clet
function has been evaluated. This makes this definition of clet compatible with the one
found in Scheme.

(define (clet::env clet::vars clet::init clet::varinits)
(if (null? clet::varinits) (cons clet::vars clet::init)
(clet::env
(cons (caar clet::varinits) clet::vars)
(cons (list 'define (caar clet::varinits)
(list 'quote (eval (cadar clet::varinits)))) clet::init)

(cdr clet::varinits))

)

(define (clet ?clet::vars . ?clet::body)

(progn
(define init (clet::env nil nil ?clet::vars))

(define pvar (car init))

(define init (cdr init))

(eval (cons 'progn init))

(eval (cons 'progn (closure pvar ?clet::body)))

)

? (define cp (clet ((x 1) (y 2)) (lambda (2) (+ xy 2))))
cp

?(cp 3)

? (define x 5)

X

? (cp 3)

[user functions] Le_Lisp

gensym

SYNOPSIS

(gensym <name>)

(gensym)

DESCRIPTION

GENSYM is used to generate new symbols. Each time it is called, GENSYM returns a new
symbol of the form Gxxx where xxx is a sequential counter number. The prefix G is stored
within the global variable gensym::key and the prefix symbol G within the global variable
gensym::prefix. When the GENSYM function is called with a string parameter name then
this string is used in place of the standard prefix.

The gensym::key and gensym::prefix symbols are stored in the data environment.

RETURN VALUE
SYMBOL

EXAMPLES
? (gensym)
G110l

? (gensym)
G1102

? (let ((gensym::prefix "etiq")) (gensym))
etiql1103

? (gensym “whatever”)

whateverl104

202 /258

Lambda Calculus.lisp

The example file Lambda Calculus adds definitions related to the lambda calculus and
combinators theories. They allow the transformation of lambda calculus expressions
written as My Lisp expressions with currying, alpha-conversion, beta-reduction, SK
combinators rewriting, etc. The de Bruijn notation is also used to assert equivalence
between expressions.

All functions directly related to the lambda calculus example file are prefixed with the Ic::
sequence. All lambda expressions directly related to the Church expressions are prefixed
with the church:: sequence.

The source code contains regression tests that is a good reference to learn the usage of
most of the functions.

203 /258

Lambda expressions

My Lisp evaluations rules are still valid when running the Lambda Calculus functions; thus
it is important to prevent the standard eval function from evaluating lambda expressions
upon reading. You can use quotation but most likely you will need to use the special non
evaluating function Ic::expr when nested definitions are used:

? (Ic::eval (lc::expr lc::B (lc::expr lc::B 1c::W) (Ic::expr lc::B lc::B 1c::C)))

S

? (Ic::redux* (lc::expr church::succ (lc::expr church::succ church::0)))
(lambda (fx) (f (fx)))

The lc::expr function is nothing but the standard /ist function.

alpha conversion

The (Ic::subst M x N) function substitutes the term x for N in M, assuming that N and sub-
terms of M have no common free variables. The (Ic::alpha M x N) function substitutes the
term x for N in M with explicit alpha-conversion whenever necessary:

? (Ic::subst (lambda (y) (v z)) 'z lambda (y) (xy v)))

(lambda (y) (v (lambda (y) (x 7 ¥))))

? (Ic::subst (lambda (y) (v z)) 'z lambda (y) (xy v)))
(lambda (y) (y (lambda (y) (x ¥ ¥))))

? (Ic::subst (lambda (y) (v z)) 'z lambda (y) (xy v)))
(lambda (y) (y (lambda (y) (x ¥ ¥))))

In the previous second example the [c::subst is usually considered incorrect because the
free-variable x in (lambda (y) (x y y)) becomes a bound variable after the substitution.
When the Ic::alpha function is used instead, the alpha conversion is applied against the x
term of the leading lambda expression (lambda (x)...) such as using the term @x7, thus
returning a proper result.

beta conversion and redux

The (Ic::beta M N) function applies the term N to the lambda expression M and the
(Ic::beta* M . N) function applies all the terms of the implicit list N to M. Both functions are
guaranteed to terminate because they only reduce once per argument N:

? (lci:beta lc::S 'M)

(lambda (y z) (M z (v 2)))

? (Ic::beta* (lambda (xy 2) (x z (v 2))) ‘M ‘N)
(lambda (z) (M z (N z)))

The (Ic::redux M) function tries to reduce once the lambda expression M, that is applying
the Ic::beta function onto itself when possible. The (lc::redux* M) tries to invoke the
reduction for a maximum given number of iterations indicated by the variable
Ic::redux*::max-iterations (initially set to 10) thus as avoiding infinite loops when handling
terms without normal form. Here are a few examples:

? (Ic::redux* '((lambda (x v 2) ((x z) (v 2))) (lambda (x y) x) (lambda (x y) x)))

(lambda (z) z)

? (set! lc::redux*::max-iterations 10)

lc::redux*::max-iterations

? (Ic::redux* (lc::expr church::pred (Ic::expr church::succ church::2)))
(lambda (f x) (f (f (lambda (u) x) f))))

? (set! lc::redux*::max-iterations 20)

lc::redux*::max-iterations

? (Ic::redux* (lc::expr church::pred (Ic::expr church::succ church::2)))
(lambda (fx) (f (fx)))

In the previous examples, the last 2 [c::redux* calls returned different values because the
Ic::redux function was applied a different number of times.

de Bruijn notation

The (lc::indexed M) function returns the lambda expression M using the de Bruijn
notation. This notation is quite important because it can be used to assert whether two
lambda expressions are the same without any need to take into account alpha
conversion:

? (Ic::indexed (lambda (x y) (xy)))
A\ A @2 @1)

? (lci:indexed (lambda (x y z) ((x y) (lambda (t) (t x 2)))))
AAAN@3@2 (A @1 @4 @2))

Combinators

The Lambda Calculus file also adds classical S and K combinators with functions to
manipulate them. Underneath combinators are lambda expressions and essentially
interpreted as such.

Conversion

The (Ic::->sk M) function converts the lambda expression M into its equivalent sequence
of S and K symbols. The optional second parameter is a list with the symbols to use for S
and K, and optionally / (intended as SKK) when the standard SKK simplification is required
or needed. The result sequence is hardly optimized (in the sense of minimum number of
terms) and the function itself makes sense when M has no free variables.

? (lci:->sk (lambda (x v z) (2 ¥ x)))

(S (K (S(S XS (S XS ESKK)) S KK SKK))))) S KK) (S (KK) (SKK))))

? (lei:->sk (lambda (x v z) (zy x)) ‘(SK1I))
B EEEGXS) B EED) G EK)D)))) (S EKK) (S KK)ID))

The (lc::parse expr) function converts a sequence of combinators into a lambda
expression. The combinators may be any of those known to the system, thatis S, K, I, B, C,
W, and Y (see the Ic::register-term function):

? (Ic::parse '(SK S))
(Qlambda (xy 2) (x z (v 2))) (lambda (x y) x) (lambda (xy z) (x z (Y 2))))

? (Ic::eval (lc::parse '(SK S)))
I

? (Ic::indexed (Ic::redux* (Ic::parse '(B (B W) (B B)))))
A A A @3@2 (@1 @1))

Evaluations

The Ic::known-terms symbol is a dictionary of all the known terms. The keys are user
names and the values lists associated to these names, with the first element the lambda
expressions and the second element their indexed (de Bruijn) representations. The
standard combinators S, K, I, B, C, W, and Y are part of the known symbols. You can add a
lambda expression to the dictionary using the function (Ic::register-term name expr):

? church::1

(lambda (f x) (f x))

? (lciiregister-term 'l church::1)

(\. \. @2 @1)

? (dictionary::find lc::known-terms 1)
(lambda (fx) (fx)) (\. A. @2 @1))

The (Ic::eval M) tries to evaluate the lambda expression M into a known term; if the term
is not associated to with a Ic::known-term entry then its indexed form is returned; the
function uses the Ic::redux* function to reduce M, thus the result depends on the
parameter [c::redux*::max-iterations:

? (lc::eval (lc::expr lc::B (Ic::expr lc::B lc::W) (Ic::expr lc::B lc::B 1c::C)))

S

? (Ic::eval (lc::parse '(B (B W) (BB C))))
S

Church encoding

The Lambda Calculus file also provides a few expressions based on Alonzo Church
encoding, with church::0, church::1, church::add, etc. for numbers, church::cons,
church::head, and church::tail for lists, and so on. Note that none of the church-prefixed
definitions are part of the Ic::known-terms dictionary, thus you will need to add them if
you want to evaluate expressions into them.

? (Ic::eval (lc::expr church::tail (Ic::expr church::cons 'a 'b)))

b

? (lciiregister-term 'l church::1)

(\. \. @2 @1)

? (Ic::eval (lc::expr church::pred church::2))
1

? (Ic::eval (lc::expr church::pred (Ic::expr church::succ church::2)))
(lambda (fx) (f (fx)))

? (lciiregister-term '2 church::2)

(A \. @2 (@2 @)

? (Ic::eval (lc::expr church::pred (Ic::expr church::succ church::2)))
2

Note that if the last Ic::eval functions did not returned the expected result, you should
check whether the variable Ic::redux*::max-iterations is set to at least 11 iterations.

Utilities
new-arg

The (lc::new-arg) function returns a new symbol of the form @xi when i is a positive
integer starting from 1. The (Ic::new-arg-reset) allows restarting the i counter from 1. This
function is used to avoid name conflict during explicit alpha conversions and assumes
that no user symbol is of the form @x1, @x2, etc.

free-vars

The (Ic::free-vars M) function returns the list of the free variables of M whilst (Ic::free-var? x
M) determines whether x is a free variable of M:

? (lc::free-vars (lc::expr (lambda (x y z) (+ xa b y))))
(ba+)

curry

The (Ic::curry M) function returns the lambda expression M as a composition of lambda
expressions with no more than one argument each:

? (Ic::curry '(lambda (x y) (xv)))
(lambda (x) (lambda (y) (xy)))

? (Ic::curry '(lambda (x y) (x (lambda (t 2) (v t (x 2))))))
(lambda (x) (lambda (y) (x (lambda (t) (lambda (z) (v t (x 2)))))))

Turtle graphics

Turtle graphics

The turtle graphics engine allows drawing graphics using the LOGO language set of
commands: the system renders the tracks of a turtle that is moved onto the screen using
simple commands. Though the set of commands is simple and intuitive, you can obtain
very complex graphics like Hilbert curves or Barnsley's fern.

My Lisp provides a lot of examples, most of which are extracted from the book “Turtle
Geometry” by Harold Abelson and Andrea diSessa.

211/ 258

Logo language

My Lisp implements most of the commands of the LOGO language and its variants,
either as built-in functions or library ones loaded when the interpreter starts. The special
library file “turtle-shortcuts” further simplifies the commands using the common
abbreviations; this is especially useful when working on an iPhone.

Colors

A color is either a string or symbol (black, white, red, ...), or a list of floats ranging 0..1
and defining an RGBA color; the alpha component is optional. The known names are:

e white, black, gray
* red, orange, yellow, green, mint, teal, cyan, blue, indigo, purple, pink, brown,

e grayl, gray2, gray3, gray4, gray5, gray6

The colors are adjusted depending on the dark or light mode of the device.

Turtle graphics

Shortcuts

The file library file turtle-shortcuts.lisp contains common LOGO shortcuts that may
simplify the writing of LOGO programs on small devices or when porting from LOGO
programs:

shortcut shortcut alt function

pc turtle::pen-color

pc# turtle::pen-color using the n-th system
color

bc turtle::background-color

bc# turtle::background-color using the n-

th system color.

home turtle::home
It left turtle::left
rt right turtle::right
td forward turtle::forward
bk back turtle::backward
pu penup turtle::pen-up
pd pendown turtle::pen-down
mv move-to turtle::move-to

213/ 258

Turtle graphics

turtle::arc

SYNOPSIS

(turtle::arc <degrees> <radius>)

DESCRIPTION

TURTLE::ARC draws an arc of a circle. The center of the circle is the current position of
the turtle. The arc is drawn with the given radius <radius>. It starts at the current heading
of the turtle and continues clockwise for the given number of degrees <degrees> if
<degrees> is positive, or counter-clockwise when <degrees> is negative. The turtle does
not move.

RETURN VALUE
T or NIL

EXAMPLES

draw circles:
(turtle::arc 360 10)
(turtle::arc 360 20)
(turtle::arc 360 30)

214 /258

Turtle graphics

turtle::background-color

SYNOPSIS
(turtle::background-color <color>)

(turtle::background-color)

DESCRIPTION

TURTLE::BACKGROUND-COLOR sets the background color of the drawing canvas. When
no color is given, the default system background color is used (white in light mode, black
in dark mode). See the color section at the beginning of the chapter for interpreting the
<color> parameter.

RETURN VALUE
SEXPR

EXAMPLES
(turtle::name "Square")
(turtle::reset)
(turtle::background-color 'default)
(turtle::pen-color 'default)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)

215/ 258

Turtle graphics

turtle::backward

SYNOPSIS

(turtle::backward <distance>)

DESCRIPTION
TURTLE::BACKWARD is a turtle.lisp shortcut for (TURTLE::FORWARD (- <distance>)).

RETURN VALUE
NONE

EXAMPLES

216/ 258

Turtle graphics

turtle::forward

SYNOPSIS

(turtle::forward <distance>)

DESCRIPTION

TURTLE::FORWARD advances the turtle by the given distance. If the pen is down, then a
line is drawn.

RETURN VALUE
NONE

EXAMPLES
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)

217 /258

Turtle graphics

turtle::heading

SYNOPSIS
(turtle::heading <angle>)

DESCRIPTION

TURTLE::HEADING sets the turtle direction to a specific direction given by an angle
expressed in degrees. The north is at position 0, west at 90, south at 180, and east at 270.

RETURN VALUE
NONE

EXAMPLES
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)

218/ 258

Turtle graphics

turtle::home

SYNOPSIS

(turtle::home)

DESCRIPTION
TURTLE::HOME is a turtle.lisp shortcut for (TURTLE::MOVE-TO 0 0).

RETURN VALUE
NONE

EXAMPLES

219 /258

Turtle graphics

turtle::left

SYNOPSIS

(turtle::left <degrees>)

DESCRIPTION
TURTLE::LEFT is a turtle.lisp shortcut for (TURTLE::TURN <degrees>).

RETURN VALUE
NONE

EXAMPLES

220/ 258

Turtle graphics

turtle::move-to

SYNOPSIS

(turtle::move-to <x> <y>)

DESCRIPTION

TURTLE::MOVE-TO moves the turtle to a specific absolute position. No line is drawn.

RETURN VALUE
NONE

EXAMPLES
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)

221/ 258

Turtle graphics

turtle::name

SYNOPSIS

(turtle::name <string>)

DESCRIPTION

TURTLE::NAME names the current drawing canvas. Canvas with different names are
preserved within the turtle window. If reusing an existing canvas, then the drawings are
appended to it.

RETURN VALUE
NONE

EXAMPLES
(turtle::name "Square")
(turtle::reset)
(turtle::background-color 'default)
(turtle::pen-color 'default)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)

222/ 258

Turtle graphics

turtle::pen-color

SYNOPSIS
(turtle::pen-color <color>)

(turtle::pen-color)

DESCRIPTION

TURTLE::PEN-COLOR sets the colors of the pen. It returns the previous color. When no
color is given, the default system foreground color is used (black in light mode, white in
dark mode). See the color section at the beginning of the chapter for interpreting the
<color> parameter.

RETURN VALUE
NUMBER

EXAMPLES
(turtle::name "Square")
(turtle::reset)
(turtle::background-color 'default)
(turtle::pen-color 'default)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)

223 /258

Turtle graphics

turtle::pen-down

SYNOPSIS

(turtle::pen-down)

DESCRIPTION

TURTLE::PEN-DOWN moves the pen down, thus enabling drawing when the turtle is
displaced onto the canvas.

RETURN VALUE
NONE

EXAMPLES
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)

224 /258

Turtle graphics

turtle::pen-up

SYNOPSIS
(turtle::pen-up)

DESCRIPTION

TURTLE::PEN-UP moves the pen up, thus disabling any drawing when the turtle is
displaced onto the canvas.

RETURN VALUE
NONE

EXAMPLES
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)

225/ 258

Turtle graphics

turtle::pen-width

SYNOPSIS

(turtle::pen-width <size>)

DESCRIPTION

TURTLE::PEN-WIDTH sets the size in pixels of the drawing pen. It returns the previous
width.

RETURN VALUE
NUMBER

EXAMPLES
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)

226 /258

Turtle graphics

turtle::push

SYNOPSIS
(turtle::push)

DESCRIPTION

TURTLE::PUSH saves the turtle state onto a stack and for later restoration using the
TURTLE::POP function. Each turtle has its own stack and a state is made of the heading,
position and pen up/down status of the turtle.

RETURN VALUE
NONE

EXAMPLES

227 /258

Turtle graphics

turtle::pop

SYNOPSIS
(turtle::pop)

DESCRIPTION

TURTLE::POP restores the turtle state that was last pushed using the TURTLE::PUSH
function and removes this state from the stack of the states. If the stack is empty, then the
turtle state is left unchanged. Each turtle has its own stack and a state is made of the
heading, position and pen up/down status of the turtle.

RETURN VALUE
NONE

EXAMPLES

228 /258

Turtle graphics

turtle::reset

SYNOPSIS

(turtle::reset)

DESCRIPTION

TURTLE::RESET clears the current canvas and recenters the turtle, pen down. It is a good
practice to call this function when starting a new drawing.

RETURN VALUE
NONE

EXAMPLES

229 /258

Turtle graphics

turtle::right

SYNOPSIS

(turtle::right <degrees>)

DESCRIPTION
TURTLE::RIGHT is a turtle.lisp shortcut for (TURTLE::TURN (- <degrees>)).

RETURN VALUE
NONE

EXAMPLES

230/ 258

Turtle graphics

turtle::turn

SYNOPSIS

(turtle::turn <angle>)

DESCRIPTION

TURTLE::TURN turns to the left the turtle by an <angle> expresses in degrees; when the
angle is negative, the turtle head is turned to the right. The TURTLE::LEFT and
TURTLE::RIGHT functions are shortcuts to indicate the left or right direction.

RETURN VALUE
NONE

EXAMPLES
(turtle::name ‘square)
(turtle::reset)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)
(turtle::turn 90)
(turtle::forward 100)

231/258

Tracing and debugging

Tracing & Debugging

Tracing is one of the most useful mechanism for debugging or understanding how Lisp
programs and the interpreter work.

My Lisp ships with an integrated debugger and an advanced trace facility. The debugger
allows suspend and resume evaluations along with the viewing and editing of the
bindings. It is invoked as a standard My Lisp function SYS::DEBUG.

232/ 258

The function (STS::TRACE-MODE <mode>) allows controlling the level of tracing
required, from no trace to all evaluation steps. The SYS::DEBUG function is not affected
by the current level of tracing. The supported modes are:

None

All tracing functions are actually disabled and no no tracing is printed.

Stats

The statistics mode consists in printing general purpose performance
counters of the expressions that have been evaluated. Once a full evaluation
has completed, the elapsed time, the number of evaluations made and the
deepest stack level that was reached are printed. These informations are
merely informative but interesting to understand or feel the complexity of the
operations involved. They have nearly no impact onto the interpreter and its
execution behavior and speed.

Print

The print mode consists in printing trace messages inserted within the
expressions by the programmer. When activated, all messages printed with
the println function and starting with the “,**SYS.DBG:” or “;**SYS::DBG:”
prefixes are printed as traces; when the mode is not activated, all these
messages are ignored.

This mode allows keeping permanent programming traces within the
programs as an alternative to other traces command. When the print mode is
not enabled, the parameters of the printin function are not evaluated once the
“**SYS.DBG:” or “;**SYS::DBG:” prefixes have been encountered, thus the
performance impact is somehow minimal if the prefix is given as the first
parameter; for instance (println “;**SYS::DBG:” A B C) will not evaluate A, B,
and C when the trace mode is different from ‘print.

Eval

The eval mode is the most detailed mode as it prints out almost all evaluation
steps during the interpretation of an expression. These traces are merely
informative (that is, they do not change the behavior of the interpreter) but
quite fundamental to understand what's going on under the hood.

Warning: these traces are verbose and have a severe performance impact. For
most and every complex scenarios, the trace mode will be more effective.

Trace

The trace mode is a targeted eval mode with the eval function printed only for
a set of functions previously registered with the SYS::TRACE function. For each
of these functions, the parameters are printed upon invocation and the return
value is also printed when the functions returned; each call is also indented
and prefixed with the current stack level in order to understand when tail-
recursion or recursion are in action.

The interpreter is automatically stopped and the debugger started when a
traced function is entered or exited. It is possible to disable this behavior from
within the debugger itself. This behavior allows entering the debugger
without any need to add SYS::DEBUG function calls.

Note that when invoking the SYS::TRACE function, user functions must be
quoted as in:

(SYS::TRACE ‘my-function)

Starting with version 2.02, the debugger is automatically started when running
in trace mode and a trace is printed, thus smoothly combining the debugger
and the original trace engine.

Tracing and debugging

sys::bindings

SYNOPSIS
(sys::bindings)

(sys::bindings <number>)

DESCRIPTION

SYS::BINDINGS returns the environment bindings. When invoked without parameters it
returns the current level ; when <number> is given then it returns the list of the bound
symbols for the given level. The symbols are returned in a list that is sorted alphabetically
according to the names of the symbols.

See the Startup paragraph for a description of the bindings contexts.

Note that starting with version 1.82, the original BINDINGS function is considered
obsolete and should be avoided; this original function BINDINGS is now implemented
within the Tools.lisp library file as a synonym to the SYS::BINDINGS function.

RETURN VALUE
NUMBER or LIST

EXAMPLES
? (sys::bindings)
3

? (sys::bindings ‘root)
(("nan" nan) ("nil" nil) ("pi" 3.1416) ("t" t) ("n" 3.1416))

235/ 258

Tracing and debugging

sys::bindings-names

SYNOPSIS

(sys::bindings-names <number>)

DESCRIPTION

SYS::BINDINGS-NAMES returns the list of the bound symbols for the given level; when
the level <number> is omitted then the current level is assumed. The symbols are
returned in a list that is sorted alphabetically.

This function is a user function implemented within the tools.lisp library file. See the
Startup paragraph for a description of the bindings contexts.

Note that starting with version 1.82, the original BINDINGS-NAMES function is
considered obsolete and should be avoided.

RETURN VALUE
LIST

EXAMPLES
? (sys::bindings-names 0)

(“nan nil!’ “pi” “t” “.I_[”)

236/ 258

Tracing and debugging

sys::bindings-assoc

SYNOPSIS

(sys::bindings-assoc <name> <number>)

DESCRIPTION

SYS::BINDINGS-ASSOC returns the value associated to the bound symbol for the given
level.

This function is a user function implemented within the tools.lisp library file. See the
Startup paragraph for a description of the bindings contexts.

Note that starting with version 1.82, the original BINDINGS-ASSOC function is
considered obsolete and should be avoided.

RETURN VALUE
SEXPR

EXAMPLES
? (sys::bindings-assoc "nan" 0)

nan

? (sys::bindings-assoc "pi" 0)
3.1416

? (sys::bindings)
3

? (sys::bindings-assoc "pi")

nil

237 /258

Tracing and debugging

sys::clear-bindings

SYNOPSIS

(sys::clear-bindings)

DESCRIPTION

SYS::CLEAR-BINDINGS clears all the bindings at the current level. This is not the same as
a reset of the interpreter because you can not clear or reset to their original values the
bindings at a level below the current one.

RETURN VALUE
NIL

EXAMPLES
? (length (sys::bindings-names))
405

? (sys::clear-bindings)

nil

? (length (sys::bindings-names))
0

238 /258

sys::debug

SYNOPSIS
(sys::debug)

(sys::debug (when <expr>) (name <expr>))

DESCRIPTION

SYS::DEBUG starts the debugger and stops the execution of the interpreter until a user
action is given. When the optional (when <expr>) part is indicated, the debugger is
started only if <expr> evaluates to T. When the optional (name <expr>) part is indicated,
the text associated to with the evaluation of <expr> is printed in the debugger toolbar.

Note that you can take advantage of PROGN and the (when...) or (name...) parts to print
trace messages or create special bindings to give further context when the debugger is
presented.

RETURN VALUE
NONE

EXAMPLES
(define (test a b)
(sys::debug
(when (not (number? a)))

(name (->string "wrong value for a=" a)))
(+ab))

The debugger will start when the test function is invoked against a value of a that is not
numeric. At this point, the user will be able to stop the current evaluation, edit some
bindings, and resume the execution.

Tracing and debugging

sys::error?

SYNOPSIS

(sys::error? <expr>)

DESCRIPTION

SYS::ERROR? determines whether the evaluation of <expr> generated an interpreter
error. It allows recovering fatal errors in programs running an interpreter within an
interpreter.

RETURN VALUE
T or NIL

EXAMPLES

(define (test)
(define check (some-undefined-function))
(unless (error? check)

(something-else)))

240/ 258

Tracing and debugging

sys::print-values

SYNOPSIS

(sys::print-values <name>...)

DESCRIPTION

SYS::PRINT-VALUES prints the values associated to variables. It comes handy when
debugging some code to understand the state of variables.

This function is a user function implemented within the tools.lisp library file.

RETURN VALUE
NONE

EXAMPLES
? (define x 5)

X

? (define y 8)
y

? (sys::print-values x y)

x=5, y=8

241/ 258

Tracing and debugging

sys::trace

SYNOPSIS

(sys::itrace <name>...)

DESCRIPTION

SYS::TRACE starts tracing the functions described by the <name>... parameters. You can
trace as many functions as required and the set of traced functions is kept across
sessions. When invoked without parameters it returns the list of the traced functions.

Note that the functions are effectively traced if the current trace mode is TRACE, which is
the default when the interpreter is started or following the execution of the instruction
(SYS::TRACE-MODE ‘trace).

RETURN VALUE
T or LIST

EXAMPLES
? (sys::trace ‘fib ‘fib::helper)
t

? (fib 6)
[001] fib --> n=6
[001] fib::helper --> n=6 a=1 b=1
[001] fib::helper --> n=5 a=1 b=2
[001] fib::helper --> n=4 a=2 b=3
[001] fib::helper --> n=3 a=3 b=5
[001] fib::helper --> n=2 a=5 b=8
[001] fib::helper x5 <--8
[001] fib <-- 8

? (sys::trace)
(fib fib::helper)

242 /258

Tracing and debugging

sys::trace-mode

SYNOPSIS
(sys::trace-mode)

(sys::itrace-mode <mode>)

DESCRIPTION

SYS::TRACE-MODE gets or sets the current tracing mode. When supplied, the <mode>
parameter may be a string or a symbol matching one of the following modes: none, stats,
print, eval, trace.

See the initial page of the chapter and the SYS::TRACE function for details regarding
tracing and debugging.

RETURN VALUE
SYMBOL or NIL

EXAMPLES

? (sys::itrace-mode ‘stats)
Total evaluations 12
Maximum stack level : 2
Evaluation time : 0.000s

trace

? (sys::itrace-mode)

Total evaluations 1
Maximum stack level : 1
Evaluation time : 0.000s

stats

? (sys::itrace-mode ‘trace)

stats

243 /258

Tracing and debugging

sys::untrace

SYNOPSIS

(sys::untrace <name>...)

DESCRIPTION

SYS::UNTRACE removes the tracing added to functions with calls to the SYS::TRACE
function. When invoked without parameters, all functions are removed from the traces.

See the initial page of the chapter and the SYS::TRACE function for details regarding
tracing and debugging.

RETURN VALUE
T or NIL

EXAMPLES
? (sys::untrace ‘fib::helper)
t

? (fib 6)
[001] fib --> n=6
[001] fib <-- 8

8

244 /258

Options

Options

Some presentation options of the interpreter are accessible through predefined
functions. Lisp settings are used as opposed to Ul ones for the sake of simplicity, though
the My Lisp application may expose them directly on a settings screen in the future.

245/ 258

Options

options::integer-mode

SYNOPSIS
(options::integer-mode <mode>)

(options::integer-mode)

DESCRIPTION

OPTIONS::INTEGER-MODE indicates whether and how big integers and rationals are
supported. When no parameter is given, the current mode is returned. When a
parameter is given, it changes the current integer mode accordingly and returns the
previous value. The supported modes are:

- auto, the default, where the parser infers the integer and rational types from the input.
This is the only mode where rationals can be input.

- none, where integer and rational numbers must be explicitly created from the functions
like ->INTEGER.

- suffix, where integer numbers are recognized when the integer value is suffixed by the
character indicated in the option OPTIONS::INTEGER-SUFFIX. In such a case, the suffix
is used only for input, not output.

Note: you should reset the interpreter when changing the integer mode to ensure that all
definitions are read as per the value of the option.

RETURN VALUE
STRING

EXAMPLES
? (options::integer-mode ‘auto)

“auto”

? (integer? 1)
t

246 /258

?(/13)
1/3

? (options::integer-mode ‘none)

“autO”

? (integer? 1)

nil

?(/183)
0.3333

? (options::integer-mode ‘suffix)

“none”

? (integer? 1)

nil

? (integer? 1#)
t

?(/13)
0.3333

? (/ 1# 3#)
1/3

? (options::integer-mode ‘auto)

“suffix”

?(/13)
1/3

Options

options::integer-suffix

SYNOPSIS
(options::integer-suffix <suffix>)

(options::integer-suffix)

DESCRIPTION

OPTIONS::INTEGER-SUFFIX indicates the character to use as suffix to recognize integers
when the OPTIONS::INTEGER-MODE is suffix or auto. When no parameter is given, the
current suffix is returned. When a parameter is given, it changes the current integer suffix
accordingly and returns the previous value. The default value is #.

Note: you should reset the interpreter when changing the integer mode to ensure that all
definitions are read as per the value of the option.

RETURN VALUE
STRING

EXAMPLES
? (options::integer-mode ‘suffix)

“auto”

? (integer? 1)

nil

?(/13)
1/3

? (options::integer-suffix)
113 #"

? (integer? 1#)

248 /258

? (/ 1# 3#)
1/3

? (options::integer-suffix ‘N)
13 #”

? (integer? 1N)
t

? (integer? 1#)

nil

? (/ 1N 3N)
1/3

? (options::integer-suffix ‘#)
“N”

? (options::integer-mode ‘auto)

“suffix”

Options

options::number-decimals

SYNOPSIS
(options::number-decimals <number>)

(options::number-decimals)

DESCRIPTION

OPTIONS::NUMBER-DECIMALS indicates the number of decimals to use when
formatting floating point values. The default is 4. When a parameter is given it changes
the current number of decimals accordingly and returns the previous value.

Note that the number of decimals has no consequence on the internal precision of the
values and operations.

The value of this option is common to all interpreter instances and saved/restored across
sessions.

Obsolete synonym: starting with version 1.85, the original NUMBER->STRING-DECIMALS
function is obsolete and must be avoided; this original function is now implemented
within the Tools.lisp library file as a synonym to the OPTIONS::NUMBER-DECIMALS
function.

RETURN VALUE
NUMBER

EXAMPLES
? (number->string-decimals)
4

? (/1.0 3)
0.3333

? (number->string-decimals 6)
4

250/ 258

? (number->string-decimals)
6

? (/1.0 3)
0.333333

Options

options::number-format

SYNOPSIS
(options::number-format <format>)

(option::number-format)

DESCRIPTION

OPTIONS::NUMBER-FORMAT indicates the output format to use when formatting
floating point values. The supported formats are FIX (fixed point), ENG (engineering), and
SCI (scientific). The default is FIX. When a parameter is given it changes the current
format accordingly and returns the previous value.

Note that the output format has no consequence on the internal precision of the values
and operations.

The value of this option is common to all interpreter instances and saved/restored across
sessions.

Obsolete synonym: starting with version 1.85, the original NUMBER->STRING-FORMAT
function is obsolete and must be avoided; this original function is now implemented
within the Tools.lisp library file as a synonym to the OPTIONS::NUMBER-FORMAT
function.

RETURN VALUE
STRING

EXAMPLES

? (number->string-format)
FIX

? (* 1.23456789 10000)
12345.6789

? (number->string-format 'SCI)
FIX

252 /258

? (number->string-format)
SCI

? (* 1.23456789 10000)
1.2346E+004

? (number->string-format 'ENG)
SCI

? (number->string-format)
ENG

? (* 1.23456789 10000)
12.346E+003

Options

options::quote-as-quote

SYNOPSIS
(options::quote-as-quote)

(options::quote-as-quote <sexpr>)

DESCRIPTION

OPTIONS::QUOTE-AS-QUOTE indicates whether the QUOTE function should be printed
in plain or using the standard abbreviated apostrophe character. When <expr> is not NIL,
the QUOTE function is printed in plain. Note that when the apostrophe is used, the
QUOTE function is still printed in plain when the expression containing the QUOTE
function is not a proper one. When the <sexpr> argument is missing then the current
value is returned.

The value of this option is common to all interpreter instances and saved/restored across
sessions.

Prior to version 1.85, OPTIONS::QUOTE-AS-QUOTE was always T.

RETURN VALUE
T or NIL

EXAMPLES
? (define (kwote S) (list 'quote S))

kwote

? (options::quote-as-quote ‘t)

nil

? (options::quote-as-quote)
t

? kwote
(lambda (S) (list (quote quote) S))

254 /258

? (options::quote-as-quote ‘()
t

? (options::quote-as-quote)

nil

? kwote
(lambda (S) (list ‘quote S))

Options

options::keyboard-mode

SYNOPSIS
(options::keyboard-mode)

(options::keyboard-mode <mode>)

DESCRIPTION

OPTIONS::KEYBOARD-MODE indicates the current keyboard scheme. When no
parameter is given, the current mode is returned. When a parameter is given, it changes
the current mode accordingly and returns the previous value. The supported modes are:

o default (0), the default, where keyboard shortcuts are used whenever possible on the
software keyboard.

e no-shortcut (1), where no shortcut is displayed on the software keyboard and the
keyboard toolbar always presented.

Note 1: changing the keyboard mode requires a screen refresh; you need to change the
orientation of the iPad or change the view to the editor or help one.

Note 2: the keyboard mode has effect only on the iPad.

RETURN VALUE
STRING

EXAMPLES
? (options::keyboard-mode)
default

? (options::keyboard-mode ‘no-shortcut)
default

? (options::keyboard-mode ‘default)

no-shortcut

256 /258

Last words...

My Lisp is proudly developed by Laurent Rodier, a freelance software developer. You can

get more information at:

https://lisp.lsrodier.net

https://www.lsrodier.net

https://www.lsrodier.net
https://lisp.lsrodier.net

May the Lisp be with you...

258/ 258

